UNPKG

max-heap-typed

Version:
252 lines (201 loc) 7.3 kB
![NPM](https://img.shields.io/npm/l/max-heap-typed) ![GitHub top language](https://img.shields.io/github/languages/top/zrwusa/data-structure-typed) ![npm](https://img.shields.io/npm/dw/max-heap-typed) ![eslint](https://aleen42.github.io/badges/src/eslint.svg) ![npm bundle size](https://img.shields.io/bundlephobia/minzip/max-heap-typed) ![npm bundle size](https://img.shields.io/bundlephobia/min/max-heap-typed) ![npm](https://img.shields.io/npm/v/max-heap-typed) # What ## Brief This is a standalone Max Heap data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete [data-structure-typed](https://www.npmjs.com/package/data-structure-typed) package # How ## install ### npm ```bash npm i max-heap-typed --save ``` ### yarn ```bash yarn add max-heap-typed ``` ### snippet #### TS ```typescript import {MaxHeap} from 'data-structure-typed'; // /* or if you prefer */ import {MaxHeap} from 'heap-typed'; const maxHeap = new MaxHeap<{ keyA: string }>(); const myObj1 = {keyA: 'a1'}, myObj6 = {keyA: 'a6'}, myObj5 = {keyA: 'a5'}, myObj2 = {keyA: 'a2'}, myObj0 = {keyA: 'a0'}, myObj9 = {keyA: 'a9'}; maxHeap.add(1, myObj1); maxHeap.has(myObj1) // true maxHeap.has(myObj9) // false maxHeap.add(6, myObj6); maxHeap.has(myObj6) // true maxHeap.add(5, myObj5); maxHeap.has(myObj5) // true maxHeap.add(2, myObj2); maxHeap.has(myObj2) // true maxHeap.has(myObj6) // true maxHeap.add(0, myObj0); maxHeap.has(myObj0) // true maxHeap.has(myObj9) // false maxHeap.add(9, myObj9); maxHeap.has(myObj9) // true const peek9 = maxHeap.peek(true); peek9 && peek9.val && peek9.val.keyA // 'a9' const heapToArr = maxHeap.toArray(true); heapToArr.map(item => item?.val?.keyA) // ['a9', 'a2', 'a6', 'a1', 'a0', 'a5'] const values = ['a9', 'a6', 'a5', 'a2', 'a1', 'a0']; let i = 0; while (maxHeap.size > 0) { const polled = maxHeap.poll(true); polled && polled.val && polled.val.keyA // values[i] i++; } ``` #### JS ```javascript const {MaxHeap} = require('data-structure-typed'); // /* or if you prefer */ const {MaxHeap} = require('heap-typed'); const maxHeap = new MaxHeap(); const myObj1 = {keyA: 'a1'}, myObj6 = {keyA: 'a6'}, myObj5 = {keyA: 'a5'}, myObj2 = {keyA: 'a2'}, myObj0 = {keyA: 'a0'}, myObj9 = {keyA: 'a9'}; maxHeap.add(1, myObj1); maxHeap.has(myObj1) // true maxHeap.has(myObj9) // false maxHeap.add(6, myObj6); maxHeap.has(myObj6) // true maxHeap.add(5, myObj5); maxHeap.has(myObj5) // true maxHeap.add(2, myObj2); maxHeap.has(myObj2) // true maxHeap.has(myObj6) // true maxHeap.add(0, myObj0); maxHeap.has(myObj0) // true maxHeap.has(myObj9) // false maxHeap.add(9, myObj9); maxHeap.has(myObj9) // true const peek9 = maxHeap.peek(true); peek9 && peek9.val && peek9.val.keyA // 'a9' const heapToArr = maxHeap.toArray(true); heapToArr.map(item => item?.val?.keyA) // ['a9', 'a2', 'a6', 'a1', 'a0', 'a5'] const values = ['a9', 'a6', 'a5', 'a2', 'a1', 'a0']; let i = 0; while (maxHeap.size > 0) { const polled = maxHeap.poll(true); polled && polled.val && polled.val.keyA // values[i] i++; } ``` [//]: # (No deletion!!! Start of Example Replace Section) [//]: # (No deletion!!! End of Example Replace Section) ## API docs & Examples [API Docs](https://data-structure-typed-docs.vercel.app) [Live Examples](https://vivid-algorithm.vercel.app) <a href="https://github.com/zrwusa/vivid-algorithm" target="_blank">Examples Repository</a> ## Data Structures <table> <thead> <tr> <th>Data Structure</th> <th>Unit Test</th> <th>Performance Test</th> <th>API Docs</th> </tr> </thead> <tbody> <tr> <td>Heap</td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><a href="https://data-structure-typed-docs.vercel.app/classes/Heap.html"><span>Heap</span></a></td> </tr> </tbody> </table> ## Standard library data structure comparison <table> <thead> <tr> <th>Data Structure Typed</th> <th>C++ STL</th> <th>java.util</th> <th>Python collections</th> </tr> </thead> <tbody> <tr> <td>Heap&lt;E&gt;</td> <td>priority_queue&lt;T&gt;</td> <td>PriorityQueue&lt;E&gt;</td> <td>heapq</td> </tr> </tbody> </table> ## Benchmark [//]: # (No deletion!!! Start of Replace Section) <div class="json-to-html-collapse clearfix 0"> <div class='collapsible level0' ><span class='json-to-html-label'>heap</span></div> <div class="content"><table style="display: table; width:100%; table-layout: fixed;"><tr><th>test name</th><th>time taken (ms)</th><th>executions per sec</th><th>sample deviation</th></tr><tr><td>10,000 add & pop</td><td>5.80</td><td>172.35</td><td>8.78e-5</td></tr><tr><td>10,000 fib add & pop</td><td>357.92</td><td>2.79</td><td>0.00</td></tr></table></div> </div> [//]: # (No deletion!!! End of Replace Section) ## Built-in classic algorithms <table> <thead> <tr> <th>Algorithm</th> <th>Function Description</th> <th>Iteration Type</th> </tr> </thead> <tbody> </tbody> </table> ## Software Engineering Design Standards <table> <tr> <th>Principle</th> <th>Description</th> </tr> <tr> <td>Practicality</td> <td>Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.</td> </tr> <tr> <td>Extensibility</td> <td>Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.</td> </tr> <tr> <td>Modularization</td> <td>Includes data structure modularization and independent NPM packages.</td> </tr> <tr> <td>Efficiency</td> <td>All methods provide time and space complexity, comparable to native JS performance.</td> </tr> <tr> <td>Maintainability</td> <td>Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.</td> </tr> <tr> <td>Testability</td> <td>Automated and customized unit testing, performance testing, and integration testing.</td> </tr> <tr> <td>Portability</td> <td>Plans for porting to Java, Python, and C++, currently achieved to 80%.</td> </tr> <tr> <td>Reusability</td> <td>Fully decoupled, minimized side effects, and adheres to OOP.</td> </tr> <tr> <td>Security</td> <td>Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.</td> </tr> <tr> <td>Scalability</td> <td>Data structure software does not involve load issues.</td> </tr> </table>