UNPKG

matrix-engine-wgpu

Version:

obj sequence anim +HOTFIX raycast, webGPU powered pwa application. Crazy fast rendering with AmmoJS physics support. Simple raycaster hit object added.

470 lines (404 loc) 14.2 kB
// Note: The code in this file does not use the 'dst' output parameter of functions in the // 'wgpu-matrix' library, so produces many temporary vectors and matrices. // This is intentional, as this sample prefers readability over performance. import { mat4, vec3 } from 'wgpu-matrix'; // import Input from './input'; // // Common interface for camera implementations // export default interface Camera { // // update updates the camera using the user-input and returns the view matrix. // update(delta_time: number, input: Input): Mat4; // // The camera matrix. // // This is the inverse of the view matrix. // matrix: Mat4; // // Alias to column vector 0 of the camera matrix. // right: Vec4; // // Alias to column vector 1 of the camera matrix. // up: Vec4; // // Alias to column vector 2 of the camera matrix. // back: Vec4; // // Alias to column vector 3 of the camera matrix. // position: Vec4; // } // The common functionality between camera implementations class CameraBase { // The camera matrix matrix_ = new Float32Array([ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, ]); // The calculated view matrix readonly view_ = mat4.create(); // Aliases to column vectors of the matrix right_ = new Float32Array(this.matrix_.buffer, 4 * 0, 4); up_ = new Float32Array(this.matrix_.buffer, 4 * 4, 4); back_ = new Float32Array(this.matrix_.buffer, 4 * 8, 4); position_ = new Float32Array(this.matrix_.buffer, 4 * 12, 4); // Returns the camera matrix get matrix() { return this.matrix_; } // Assigns `mat` to the camera matrix set matrix(mat) { mat4.copy(mat, this.matrix_); } // Returns the camera view matrix get view() { return this.view_; } // Assigns `mat` to the camera view set view(mat) { mat4.copy(mat, this.view_); } // Returns column vector 0 of the camera matrix get right() { return this.right_; } // Assigns `vec` to the first 3 elements of column vector 0 of the camera matrix set right(vec) { vec3.copy(vec, this.right_); } // Returns column vector 1 of the camera matrix get up() { return this.up_; } // Assigns `vec` to the first 3 elements of column vector 1 of the camera matrix \ Vec3 set up(vec) { vec3.copy(vec, this.up_); } // Returns column vector 2 of the camera matrix get back() { return this.back_; } // Assigns `vec` to the first 3 elements of column vector 2 of the camera matrix set back(vec) { vec3.copy(vec, this.back_); } // Returns column vector 3 of the camera matrix get position() { return this.position_; } // Assigns `vec` to the first 3 elements of column vector 3 of the camera matrix set position(vec) { vec3.copy(vec, this.position_); } } // WASDCamera is a camera implementation that behaves similar to first-person-shooter PC games. export class WASDCamera extends CameraBase { // The camera absolute pitch angle pitch = 0; // The camera absolute yaw angle yaw = 0; // The movement veloicty readonly velocity_ = vec3.create(); // Speed multiplier for camera movement movementSpeed = 10; // Speed multiplier for camera rotation rotationSpeed = 1; // Movement velocity drag coeffient [0 .. 1] // 0: Continues forever // 1: Instantly stops moving frictionCoefficient = 0.99; // Returns velocity vector get velocity() { return this.velocity_; } // Assigns `vec` to the velocity vector set velocity(vec) { vec3.copy(vec, this.velocity_); } constructor(options) { super(); if (options && (options.position || options.target)) { const position = options.position ?? vec3.create(0, 0, 0); const target = options.target ?? vec3.create(0, 0, 0); const forward = vec3.normalize(vec3.sub(target, position)); this.recalculateAngles(forward); this.position = position; // console.log(`%cCamera pos: ${position}`, LOG_INFO); } } // Returns the camera matrix get matrix() { return super.matrix; } // Assigns `mat` to the camera matrix, and recalcuates the camera angles set matrix(mat) { super.matrix = mat; this.recalculateAngles(this.back); } update(deltaTime, input) { const sign = (positive, negative) => (positive ? 1 : 0) - (negative ? 1 : 0); // Apply the delta rotation to the pitch and yaw angles this.yaw -= input.analog.x * deltaTime * this.rotationSpeed; this.pitch -= input.analog.y * deltaTime * this.rotationSpeed; // Wrap yaw between [0° .. 360°], just to prevent large accumulation. this.yaw = mod(this.yaw, Math.PI * 2); // Clamp pitch between [-90° .. +90°] to prevent somersaults. this.pitch = clamp(this.pitch, -Math.PI / 2, Math.PI / 2); // Save the current position, as we're about to rebuild the camera matrix. const position = vec3.copy(this.position); // Reconstruct the camera's rotation, and store into the camera matrix. super.matrix = mat4.rotateX(mat4.rotationY(this.yaw), this.pitch); // super.matrix = mat4.rotateX(mat4.rotationY(this.yaw), -this.pitch); // super.matrix = mat4.rotateY(mat4.rotateX(this.pitch), this.yaw); // Calculate the new target velocity const digital = input.digital; const deltaRight = sign(digital.right, digital.left); const deltaUp = sign(digital.up, digital.down); const targetVelocity = vec3.create(); const deltaBack = sign(digital.backward, digital.forward); vec3.addScaled(targetVelocity, this.right, deltaRight, targetVelocity); vec3.addScaled(targetVelocity, this.up, deltaUp, targetVelocity); vec3.addScaled(targetVelocity, this.back, deltaBack, targetVelocity); vec3.normalize(targetVelocity, targetVelocity); vec3.mulScalar(targetVelocity, this.movementSpeed, targetVelocity); // Mix new target velocity this.velocity = lerp( targetVelocity, this.velocity, Math.pow(1 - this.frictionCoefficient, deltaTime) ); // Integrate velocity to calculate new position this.position = vec3.addScaled(position, this.velocity, deltaTime); // Invert the camera matrix to build the view matrix this.view = mat4.invert(this.matrix); return this.view; } // Recalculates the yaw and pitch values from a directional vector recalculateAngles(dir) { this.yaw = Math.atan2(dir[0], dir[2]); this.pitch = -Math.asin(dir[1]); } } // ArcballCamera implements a basic orbiting camera around the world origin export class ArcballCamera extends CameraBase { // The camera distance from the target distance = 0; // The current angular velocity angularVelocity = 0; // The current rotation axis axis_ = vec3.create(); // Returns the rotation axis get axis() { return this.axis_; } // Assigns `vec` to the rotation axis set axis(vec) { vec3.copy(vec, this.axis_); } // Speed multiplier for camera rotation rotationSpeed = 1; // Speed multiplier for camera zoom zoomSpeed = 0.1; // Rotation velocity drag coeffient [0 .. 1] // 0: Spins forever // 1: Instantly stops spinning frictionCoefficient = 0.999; // Construtor constructor(options) { super(); if (options && options.position) { this.position = options.position; this.distance = vec3.len(this.position); this.back = vec3.normalize(this.position); this.recalcuateRight(); this.recalcuateUp(); } } // Returns the camera matrix get matrix() { return super.matrix; } // Assigns `mat` to the camera matrix, and recalcuates the distance set matrix(mat) { super.matrix = mat; this.distance = vec3.len(this.position); } update(deltaTime, input) { const epsilon = 0.0000001; if (input.analog.touching) { // Currently being dragged. this.angularVelocity = 0; } else { // Dampen any existing angular velocity this.angularVelocity *= Math.pow(1 - this.frictionCoefficient, deltaTime); } // Calculate the movement vector const movement = vec3.create(); vec3.addScaled(movement, this.right, input.analog.x, movement); vec3.addScaled(movement, this.up, -input.analog.y, movement); // Cross the movement vector with the view direction to calculate the rotation axis x magnitude const crossProduct = vec3.cross(movement, this.back); // Calculate the magnitude of the drag const magnitude = vec3.len(crossProduct); if (magnitude > epsilon) { // Normalize the crossProduct to get the rotation axis this.axis = vec3.scale(crossProduct, 1 / magnitude); // Remember the current angular velocity. This is used when the touch is released for a fling. this.angularVelocity = magnitude * this.rotationSpeed; } // The rotation around this.axis to apply to the camera matrix this update const rotationAngle = this.angularVelocity * deltaTime; if (rotationAngle > epsilon) { // Rotate the matrix around axis // Note: The rotation is not done as a matrix-matrix multiply as the repeated multiplications // will quickly introduce substantial error into the matrix. this.back = vec3.normalize(rotate(this.back, this.axis, rotationAngle)); this.recalcuateRight(); this.recalcuateUp(); } // recalculate `this.position` from `this.back` considering zoom if (input.analog.zoom !== 0) { this.distance *= 1 + input.analog.zoom * this.zoomSpeed; } this.position = vec3.scale(this.back, this.distance); // Invert the camera matrix to build the view matrix this.view = mat4.invert(this.matrix); return this.view; } // Assigns `this.right` with the cross product of `this.up` and `this.back` recalcuateRight() { this.right = vec3.normalize(vec3.cross(this.up, this.back)); } // Assigns `this.up` with the cross product of `this.back` and `this.right` recalcuateUp() { this.up = vec3.normalize(vec3.cross(this.back, this.right)); } } // Returns `x` clamped between [`min` .. `max`] function clamp(x, min, max) { return Math.min(Math.max(x, min), max); } // Returns `x` float-modulo `div` function mod(x, div) { return x - Math.floor(Math.abs(x) / div) * div * Math.sign(x); } // Returns `vec` rotated `angle` radians around `axis` function rotate(vec, axis, angle) { return vec3.transformMat4Upper3x3(vec, mat4.rotation(axis, angle)); } // Returns the linear interpolation between 'a' and 'b' using 's' function lerp(a, b, s) { return vec3.addScaled(a, vec3.sub(b, a), s); } // Input holds as snapshot of input state // export default interface Input { // // Digital input (e.g keyboard state) // readonly digital: { // readonly forward: boolean; // readonly backward: boolean; // readonly left: boolean; // readonly right: boolean; // readonly up: boolean; // readonly down: boolean; // }; // // Analog input (e.g mouse, touchscreen) // readonly analog: { // readonly x: number; // readonly y: number; // readonly zoom: number; // readonly touching: boolean; // }; // } // InputHandler is a function that when called, returns the current Input state. // export type InputHandler = () => Input; // createInputHandler returns an InputHandler by attaching event handlers to the window and canvas. export function createInputHandler(window, canvas) { let digital = { forward: false, backward: false, left: false, right: false, up: false, down: false, }; let analog = { x: 0, y: 0, zoom: 0, }; let mouseDown = false; const setDigital = (e, value) => { switch (e.code) { case 'KeyW': digital.forward = value; e.preventDefault(); e.stopPropagation(); break; case 'KeyS': digital.backward = value; e.preventDefault(); e.stopPropagation(); break; case 'KeyA': digital.left = value; e.preventDefault(); e.stopPropagation(); break; case 'KeyD': digital.right = value; e.preventDefault(); e.stopPropagation(); break; case 'Space': digital.up = value; e.preventDefault(); e.stopPropagation(); break; case 'ShiftLeft': case 'ControlLeft': case 'KeyC': digital.down = value; e.preventDefault(); e.stopPropagation(); break; } }; window.addEventListener('keydown', (e) => setDigital(e, true)); window.addEventListener('keyup', (e) => setDigital(e, false)); canvas.style.touchAction = 'pinch-zoom'; canvas.addEventListener('pointerdown', () => { mouseDown = true; }); canvas.addEventListener('pointerup', () => { mouseDown = false; }); canvas.addEventListener('pointermove', (e) => { mouseDown = e.pointerType == 'mouse' ? (e.buttons & 1) !== 0 : true; if (mouseDown) { // console.log('TEST ', analog) analog.x += e.movementX / 10; analog.y += e.movementY / 10; } }); canvas.addEventListener( 'wheel', (e) => { mouseDown = (e.buttons & 1) !== 0; if (mouseDown) { // The scroll value varies substantially between user agents / browsers. // Just use the sign. analog.zoom += Math.sign(e.deltaY); e.preventDefault(); e.stopPropagation(); } }, { passive: false } ); return () => { const out = { digital, analog: { x: analog.x, y: analog.y, zoom: analog.zoom, touching: mouseDown, }, }; // Clear the analog values, as these accumulate. analog.x = 0; analog.y = 0; analog.zoom = 0; return out; }; }