UNPKG

mathoid-texvcjs

Version:

A TeX/LaTeX validator for MediaWiki.

613 lines (612 loc) 22.8 kB
/** * This data was obtained by running the identifier extraction against the wikipedia pages specified in the NTCIR-11 * Math Wikipedia Task [1] and comparing it with the gold standard obtained from mlp.formulasearchengine.com. * It should be seen as a self test and test failures can be a good thing, if the fp or fn are reduced. * * [1] M. Schubotz, A. Youssef, V. Markl, and H. S. Cohl. * Challenges of Mathematical Information Retrievalin the NTCIR-11 Math Wikipedia Task. In SIGIR, 2015.) */ module.exports = { goldData: [ { "fn": [], "fp": [], "identifier": ["W", "k", "\\varepsilon"], "math_inputtex": "W(2, k) > 2^k/k^\\varepsilon", "qID": "1" }, { "fn": [], "fp": [], "identifier": ["X", "\\Sigma"], "math_inputtex": "(X,\\Sigma)", "qID": "2" }, { "fn": [], "fp": [], "identifier": ["p", "n"], "math_inputtex": "(p-1)!^n", "qID": "3" }, { "fn": [], "fp": [], "identifier": ["f_{c}", "z", "c", "c"], "math_inputtex": "f_c(z) = z^2 + c", "qID": "4" }, { "fn": [], "fp": [], "identifier": ["x", "x", "y", "y", "P"], "math_inputtex": "\\forall x \\, \\forall y \\, P(x,y) \\Leftrightarrow \\forall y \\, \\forall x \\, P(x,y)", "qID": "5" }, { "fn": [], "fp": [], "identifier": ["\\alpha", "x"], "math_inputtex": "\\alpha(x)", "qID": "6" }, { "fn": [], "fp": [], "identifier": ["\\alpha", "\\alpha", "x"], "math_inputtex": "\\alpha(x)", "qID": "7" }, { "fn": [], "fp": [], "identifier": ["\\alpha", "\\alpha", "x"], "math_inputtex": "\\alpha(x)", "qID": "8" }, { "fn": [], "fp": [], "identifier": ["\\Psi", "i_{1}", "i_{2}", "\\alpha_{1}", "\\alpha_{2}", "\\Gamma", "\\lambda", "\\Phi", "N", "N"], "math_inputtex": "|{\\Psi}\\rangle=\\sum_{i_1,i_2,\\alpha_1,\\alpha_2}\\Gamma^{[1]i_1}_{\\alpha_1}\\lambda^{[1]}_{\\alpha_1}\\Gamma^{[2]i_2}_{\\alpha_1\\alpha_2}\\lambda^{[2]}_{{\\alpha}_2}|{i_1i_2}\\rangle|{\\Phi^{[3..N]}_{\\alpha_2}}\\rangle", "qID": "9" }, { "fn": [], "fp": [], "identifier": ["z", "x", "y"], "math_inputtex": "z*x\\le y", "qID": "10" }, { "fn": [], "fp": ["d"], "identifier": ["x", "c"], "math_inputtex": " \\frac{d}{dx}\\left( \\log_c x\\right) = {1 \\over x \\ln c} , \\qquad c > 0, c \\ne 1", "qID": "11" }, { "fn": [], "fp": [], "identifier": ["\\theta", "n"], "math_inputtex": "\\theta = n \\times 137.508^\\circ,", "qID": "12" }, { "fn": [], "fp": [], "identifier": ["s_{V}", "\\mathcal{R}"], "math_inputtex": "s_V(\\mathcal{R})", "qID": "13" }, { "fn": [], "fp": [], "identifier": ["\\ell", "m"], "math_inputtex": "\\ell(m)", "qID": "14" }, { "fn": [], "fp": [], "identifier": ["b", "x"], "math_inputtex": "bx-x^2", "qID": "15" }, { "fn": [], "fp": [], "identifier": ["\\omega_{k}"], "math_inputtex": "\\omega_{k}", "qID": "16" }, { "fn": [], "fp": [], "identifier": ["\\mathbf{m}_{1}", "\\mathbf{m}_{1}"], "math_inputtex": "\\mathbf{m}_1", "qID": "17" }, { "fn": [], "fp": [], "identifier": ["r_{ij}"], "math_inputtex": "r_{ij}", "qID": "18" }, { "fn": [], "fp": [], "identifier": ["Z", "Z", "j", "g_{j}", "\\mathrm{e}", "\\beta", "\\beta", "E_{j}"], "math_inputtex": " Z = \\sum_{j} g_j \\cdot \\mathrm{e}^{- \\beta E_j}", "qID": "19" }, { "fn": [], "fp": [], "identifier": ["S'"], "math_inputtex": "S'", "qID": "20" }, { "fn": [], "fp": [], "identifier": ["S'", "S'", "S'", "S'", "S'"], "math_inputtex": "S'", "qID": "21" }, { "fn": [], "fp": [], "identifier": ["k", "l", "i", "j"], "math_inputtex": "\\text{Ker} (k_* - l_*) \\cong \\text{Im} (i_*, j_*).", "qID": "22" }, { "fn": [], "fp": ["F_{i}"], "identifier": ["D", "G", "G", "G", "G", "H", "H", "H", "H", "i", "i"], "math_inputtex": "D(G,H) = \\sum_{i=1}^{29} | F_i(G) - F_i(H) |", "qID": "23" }, { "fn": ["E_{\\mathrm{k}}", "E_{\\mathrm{r}}", "E_{\\mathrm{t}}"], "fp": ["E_{t}", "E"], "identifier": ["E_{\\mathrm{k}}", "E_{\\mathrm{k}}", "E_{\\mathrm{r}}", "E_{\\mathrm{r}}", "E_{\\mathrm{r}}", "E_{\\mathrm{t}}"], "math_inputtex": " E_\\text{k} = E_t + E_\\text{r} \\, ", "qID": "24" }, { "fn": [], "fp": [], "identifier": ["\\lambda", "\\lambda", "L", "L", "B", "d", "d"], "math_inputtex": "\\lambda(L(B)) \\leq d", "qID": "25" }, { "fn": [], "fp": [], "identifier": ["L", "C", "T"], "math_inputtex": "L\\left(C\\right) \\leq L\\left(T\\right)", "qID": "26" }, { "fn": [], "fp": [], "identifier": ["v", "c", "n"], "math_inputtex": "v = \\frac{c}{n}", "qID": "27" }, { "fn": ["\\sigma_{y}"], "fp": ["y", "\\sigma"], "identifier": ["\\sigma_{y}", "\\sigma_{y}", "\\tau", "\\pi", "h_{-2}"], "math_inputtex": "\\sigma_y^2(\\tau) = \\frac{2\\pi^2\\tau}{3}h_{-2}", "qID": "28" }, { "fn": ["R_{\\text{s normal}}"], "fp": ["a", "R", "r", "s", "l", "m", "n", "o"], "identifier": ["R_{\\text{s normal}}", "\\omega", "\\mu_{0}", "\\sigma"], "math_inputtex": " R_{s\\ normal} = \\sqrt{ \\frac{\\omega \\mu_0} {2 \\sigma} }", "qID": "29" }, { "fn": [], "fp": [], "identifier": ["\\phi_{1}"], "math_inputtex": " \\phi_1 = -30^\\circ...+30^\\circ", "qID": "30" }, { "fn": [], "fp": [], "identifier": ["T_{c}"], "math_inputtex": "T_c", "qID": "31" }, { "fn": [], "fp": [], "identifier": ["T_{c}", "T_{c}"], "math_inputtex": "T_c", "qID": "32" }, { "fn": [], "fp": [], "identifier": ["T_{c}", "T_{c}"], "math_inputtex": "T_c", "qID": "33" }, { "fn": [], "fp": [], "identifier": ["P_{1}", "X", "P", "\\alpha_{1}"], "math_inputtex": "P_1(X)=P(X)/(X-\\alpha_1)", "qID": "34" }, { "fn": [], "fp": [], "identifier": ["k", "n"], "math_inputtex": "= \\frac{k}{n}.", "qID": "35" }, { "fn": ["p_{i}"], "fp": ["p"], "identifier": ["n", "i", "r", "p_{i}", "a_{i}"], "math_inputtex": "n = \\prod_{i=1}^r p_i^{a_i}", "qID": "36" }, { "fn": [], "fp": [], "identifier": ["H", "H", "H", "j", "\\omega", "\\mathcal{F}", "h", "t"], "math_inputtex": "H(j \\omega) = \\mathcal{F}\\{h(t)\\}", "qID": "37" }, { "fn": [], "fp": [], "identifier": ["\\pi"], "math_inputtex": "\\pi/4", "qID": "38" }, { "fn": [], "fp": [], "identifier": ["x", "y", "n", "k"], "math_inputtex": "(x+y)^n = \\sum_{k=0}^n {n \\choose k}x^{n-k}y^k = \\sum_{k=0}^n {n \\choose k}x^{k}y^{n-k}.\n", "qID": "39" }, { "fn": [], "fp": [], "identifier": ["A", "t", "k"], "math_inputtex": "\\ [A]_t = -kt + [A]_0", "qID": "40" }, { "fn": [], "fp": [], "identifier": ["q"], "math_inputtex": "q^{42}", "qID": "41" }, { "fn": [], "fp": [], "identifier": ["\\alpha", "d", "\\varepsilon"], "math_inputtex": "\\alpha(d) \\le \\left(\\sqrt{3/2} + \\varepsilon\\right)^d", "qID": "42" }, { "fn": ["f^{\\mu}", "\\delta _{\\nu}^{\\mu}", "u^{\\mu}", "u^{\\alpha}", "x^{\\nu}", "u^{\\beta}"], "fp": ["\\nu", "\\mu", "\\alpha", "f", "\\delta", "\\beta", "\\pi", "u", "x"], "identifier": ["f^{\\mu}", "G", "c", "A", "T_{\\alpha\\beta}", "B", "T", "\\eta_{\\alpha\\beta}", "\\eta_{\\alpha\\beta}", "\\delta _{\\nu}^{\\mu}", "\\delta _{\\nu}^{\\mu}", "u^{\\mu}", "u_{\\nu}", "u^{\\alpha}", "x^{\\nu}", "u^{\\beta}"], "math_inputtex": " f^{\\mu} = - 8\\pi { G \\over { 3 c^4 } } \\left ( {A \\over 2} T_{\\alpha \\beta} + {B \\over 2} T \\eta_{\\alpha \\beta} \\right ) \\left ( \\delta^{\\mu}_{\\nu} + u^{\\mu} u_{\\nu} \\right ) u^{\\alpha} x^{\\nu} u^{\\beta} ", "qID": "43" }, { "fn": [], "fp": ["D", "D_{g}"], "identifier": ["u_{g}", "t", "f_{0}", "v_{a}", "\\beta", "y", "v_{g}", "v_{g}"], "math_inputtex": " \\frac{D_g u_g}{Dt} - f_{0}v_a - \\beta y v_g = 0 ", "qID": "44" }, { "fn": [], "fp": [], "identifier": ["I_{c}"], "math_inputtex": "I_c", "qID": "45" }, { "fn": [], "fp": [], "identifier": ["A", "M", "M", "\\alpha"], "math_inputtex": "\\, A \\mapsto M\\alpha(A)M^{-1} ,", "qID": "46" }, { "fn": [], "fp": [], "identifier": ["\\Gamma_{\\infty}", "\\Gamma_{\\infty}"], "math_inputtex": "\\Gamma_{\\infty}", "qID": "47" }, { "fn": [], "fp": [], "identifier": ["Y", "\\beta", "T_{8}", "I", "X"], "math_inputtex": "Y = \\beta T_8 + I X", "qID": "48" }, { "fn": [], "fp": [], "identifier": ["\\mu", "A"], "math_inputtex": " \\mu (A)= \\begin{cases} 1 & \\mbox{ if } 0 \\in A \\\\ \n 0 & \\mbox{ if } 0 \\notin A.\n\\end{cases}", "qID": "49" }, { "fn": [], "fp": [], "identifier": ["\\lambda_{in}"], "math_inputtex": "\\lambda_{in}", "qID": "50" }, { "fn": ["\\mathrm{rpm}_{\\text{motor}}"], "fp": ["p", "r", "m_{motor}"], "identifier": ["\\mathrm{rpm}_{\\text{motor}}"], "math_inputtex": "rpm_{motor}", "qID": "51" }, { "fn": [], "fp": ["d"], "identifier": ["u_{1}", "\\mathbf{x}", "z_{1}", "v_{1}", "\\dot{u}_{x}", "V_{x}", "g_{x}", "k_{1}", "u_{x}", "e_{1}", "f_{x}", "\\dot{\\mathbf{x}}", "t"], "math_inputtex": "\\underbrace{u_1(\\mathbf{x},z_1)=v_1+\\dot{u}_x}_{\\text{By definition of }v_1}=\\overbrace{-\\frac{\\partial V_x}{\\partial \\mathbf{x}}g_x(\\mathbf{x})-k_1(\\underbrace{z_1-u_x(\\mathbf{x})}_{e_1})}^{v_1} \\, + \\, \\overbrace{\\frac{\\partial u_x}{\\partial \\mathbf{x}}(\\underbrace{f_x(\\mathbf{x})+g_x(\\mathbf{x})z_1}_{\\dot{\\mathbf{x}} \\text{ (i.e., } \\frac{\\operatorname{d}\\mathbf{x}}{\\operatorname{d}t} \\text{)}})}^{\\dot{u}_x \\text{ (i.e., } \\frac{ \\operatorname{d}u_x }{\\operatorname{d}t} \\text{)}}", "qID": "52" }, { "fn": [], "fp": [], "identifier": ["E", "\\hat{\\sigma}", "n", "\\sigma"], "math_inputtex": "E \\left[ \\hat{\\sigma}^2\\right]= \\frac{n-1}{n} \\sigma^2", "qID": "53" }, { "fn": [], "fp": [], "identifier": ["\\mathsf{fv}"], "math_inputtex": "\\mathsf{fv}", "qID": "54" }, { "fn": [], "fp": [], "identifier": ["x", "y", "I"], "math_inputtex": "\\sum_x \\sum_y I(x,y) \\,\\!", "qID": "55" }, { "fn": [], "fp": [], "identifier": ["\\boldsymbol{F}_{r}"], "math_inputtex": "\\boldsymbol{F}_r", "qID": "56" }, { "fn": [], "fp": [], "identifier": ["B", "B", "A", "A"], "math_inputtex": "0\\rightarrow B\\rightarrow A\\oplus B\\rightarrow A\\rightarrow0.", "qID": "57" }, { "fn": [], "fp": [], "identifier": ["Y", "T", "\\alpha_{1}", "\\alpha_{2}", "X_{1}", "X_{2}"], "math_inputtex": "(\\nabla_Y T)(\\alpha_1, \\alpha_2, \\ldots, X_1, X_2, \\ldots) =Y(T(\\alpha_1,\\alpha_2,\\ldots,X_1,X_2,\\ldots))", "qID": "58" }, { "fn": [], "fp": [], "identifier": ["n", "\\mathbb{Z}", "d", "\\psi", "\\psi", "t", "C"], "math_inputtex": " \\sum_{n \\in \\mathbb{Z}^d} |\\psi(t,n)|^2 |n| \\leq C ", "qID": "59" }, { "fn": [], "fp": ["p"], "identifier": ["x", "x", "g", "v", "y", "y", "y"], "math_inputtex": " p = {\\frac{-x\\pm\\sqrt{x^2-4(\\frac{-gx^2}{2v^2})(\\frac{-gx^2}{2v^2}-y)}}{2(\\frac{-gx^2}{2v^2}) }}", "qID": "60" }, { "fn": [], "fp": [], "identifier": ["z", "H"], "math_inputtex": "\\left\\{ z \\in H: \\left| z \\right| > 1,\\, \\left| \\,\\mbox{Re}(z) \\,\\right| < \\frac{1}{2} \\right\\}", "qID": "61" }, { "fn": [], "fp": [], "identifier": ["T", "\\lambda", "I", "I"], "math_inputtex": "T-\\lambda I", "qID": "62" }, { "fn": [], "fp": ["sgn"], "identifier": ["y", "x", "\\rho", "\\sigma_{y}", "\\sigma_{x}", "\\mu_{x}", "\\mu_{y}"], "math_inputtex": "\n y\\left( x \\right) = {\\mathop{\\rm sgn}} \\left( {{\\rho }} \\right)\\frac{{{\\sigma _y}}}{{{\\sigma _x}}}\\left( {x - {\\mu _x}} \\right) + {\\mu _y}.\n ", "qID": "63" }, { "fn": [], "fp": [], "identifier": ["x", "b"], "math_inputtex": "x=b \\ ", "qID": "64" }, { "fn": [], "fp": [], "identifier": ["H", "K"], "math_inputtex": "H^1(K)=\\sqrt{2}", "qID": "65" }, { "fn": [], "fp": [], "identifier": ["P_{i}", "E_{K}", "S_{i-1}", "x", "C_{i}"], "math_inputtex": "P_i = \\mbox{head}(E_K (S_{i-1}), x) \\oplus C_i", "qID": "66" }, { "fn": [], "fp": ["f_{x}"], "identifier": ["f", "x"], "math_inputtex": "\\frac{ \\partial f}{ \\partial x} = f_x = \\partial_x f.", "qID": "67" }, { "fn": [], "fp": [], "identifier": ["P_{x}", "P", "a", "x", "x"], "math_inputtex": " P_x = P - \\{ a\\mid a \\geq x\\} ", "qID": "68" }, { "fn": ["Q_{1}", "Q_{2}"], "fp": ["a", "b", "d", "e", "h", "k", "n", "o", "Q", "r", "s", "t", "w"], "identifier": ["\\eta", "Q_{1}", "Q_{2}"], "math_inputtex": "\\eta = \\frac{ work\\ done } {heat\\ absorbed} = \\frac{ Q1-Q2 }{ Q1}", "qID": "69" }, { "fn": [], "fp": ["d"], "identifier": ["f", "x", "y", "p", "v"], "math_inputtex": "df = {\\partial f \\over \\partial x}dx + {\\partial f \\over \\partial y}dy = pdx + vdy", "qID": "70" }, { "fn": [], "fp": [], "identifier": ["h_{r,s}"], "math_inputtex": "h_{r,s}", "qID": "71" }, { "fn": [], "fp": [], "identifier": ["K", "M", "k", "T", "a"], "math_inputtex": " K^M_*(k) := T^*(k^\\times)/(a\\otimes (1-a)) ", "qID": "72" }, { "fn": [], "fp": [], "identifier": ["C", "K_{X}", "K_{X}"], "math_inputtex": "\\{C : K_X \\cdot C = 0\\}", "qID": "73" }, { "fn": [], "fp": ["d"], "identifier": ["\\Theta", "n"], "math_inputtex": "\\Theta \\wedge\n(d\\Theta)^n \\neq 0", "qID": "74" }, { "fn": [], "fp": ["D"], "identifier": ["\\rho", "u_{i}", "t"], "math_inputtex": "D\\left(\\rho u_i\\right)/Dt\\approx0", "qID": "75" }, { "fn": [], "fp": [], "identifier": ["z_{t}", "\\lambda_{1}", "z_{t-1}", "\\varepsilon_{t}"], "math_inputtex": " z_{t} = \\lambda_{1}z_{t-1} + \\varepsilon_{t} ", "qID": "76" }, { "fn": [], "fp": [], "identifier": ["b_{3}"], "math_inputtex": "b_3", "qID": "77" }, { "fn": [], "fp": [], "identifier": ["b_{3}"], "math_inputtex": "b_3", "qID": "78" }, { "fn": [], "fp": ["\\Delta"], "identifier": ["W", "V_{1}", "V_{2}", "p", "V"], "math_inputtex": " \\Delta W = \\int_{V_1}^{V_2} p \\mathrm{d}V \\,\\!", "qID": "79" }, { "fn": [], "fp": [], "identifier": ["f", "Z", "n"], "math_inputtex": "\\dim f(Z) > n", "qID": "80" }, { "fn": [], "fp": ["d"], "identifier": ["t", "e"], "math_inputtex": "\\frac{d}{dt} \\log_e t = \\frac{1}{t}.", "qID": "81" }, { "fn": [], "fp": [], "identifier": ["h_{i}", "X"], "math_inputtex": "h_i : X \\to \\{-1,+1\\}", "qID": "82" }, { "fn": ["\\mathrm{seqs}"], "fp": ["q", "s", "e"], "identifier": ["\\mathrm{seqs}", "\\mathrm{seqs}"], "math_inputtex": "2\\le seqs \\le6", "qID": "83" }, { "fn": [], "fp": [], "identifier": ["F", "x", "y", "\\mathcal{R}", "b", "n"], "math_inputtex": " F = \\{ (x,y) : x \\in \\mathcal{R}^b,\\, y \\in \\mathcal{R}^n,\\; x=y \\}.", "qID": "84" }, { "fn": [], "fp": [], "identifier": ["X_{i}", "\\omega", "\\omega_{i}"], "math_inputtex": "X_i(\\omega)=\\omega_i", "qID": "85" }, { "fn": [], "fp": ["\\mathrm{d}"], "identifier": ["L", "L", "q_{i}", "t", "\\dot{q_{i}}", "\\dot{q_{i}}"], "math_inputtex": "\n{\\partial{L}\\over \\partial q_i} = {\\mathrm{d} \\over \\mathrm{d}t}{\\partial{L}\\over \\partial{\\dot{q_i}}}.\n", "qID": "86" }, { "fn": [], "fp": [], "identifier": ["x_{7}"], "math_inputtex": "x_7", "qID": "87" }, { "fn": [], "fp": [], "identifier": ["\\Pi_{n}"], "math_inputtex": "\\Pi_n", "qID": "88" }, { "fn": [], "fp": [], "identifier": ["\\sigma", "X", "T", "V"], "math_inputtex": "\\sigma^2 = X^TVX,", "qID": "89" }, { "fn": [], "fp": [], "identifier": ["\\mathbb{R}", "n", "f", "x", "B", "x_{0}", "r", "S"], "math_inputtex": "\\int_{\\mathbb{R}^n}f\\,dx = \\int_0^\\infty\\left\\{\\int_{\\partial B(x_0;r)} f\\,dS\\right\\}\\,dr.", "qID": "90" }, { "fn": [], "fp": ["B", "D"], "identifier": ["x", "p_{x}", "y", "p_{y}"], "math_inputtex": "\n\\{x, p_x\\}_{DB} = \\{y, p_y\\}_{DB} = \\frac{1}{2}\n", "qID": "91" }, { "fn": [], "fp": [], "identifier": ["G_{k,\\sigma}", "y", "k", "\\sigma"], "math_inputtex": "G_{k, \\sigma} (y)= 1-(1+ky/\\sigma)^{-1/k} ", "qID": "92" }, { "fn": [], "fp": [], "identifier": ["L", "H_{B}", "H_{B}", "C", "X"], "math_inputtex": "L(H_B) \\otimes C(X)", "qID": "93" }, { "fn": [], "fp": [], "identifier": ["\\pi_{i}", "N", "i"], "math_inputtex": "\\pi_i = 2^{-N} \\tbinom Ni", "qID": "94" }, { "fn": [], "fp": [], "identifier": ["p_{1}", "p_{n}"], "math_inputtex": "(\\sqrt{p_1}, \\cdots ,\\sqrt{p_n})", "qID": "95" }, { "fn": [], "fp": [], "identifier": ["\\boldsymbol{s}"], "math_inputtex": "\\boldsymbol{s}", "qID": "96" }, { "fn": [], "fp": ["\\Delta"], "identifier": ["J", "T", "W", "y"], "math_inputtex": "\\mathbf{J^TW\\ \\Delta y}", "qID": "97" }, { "fn": [], "fp": [], "identifier": ["\\bar{V}"], "math_inputtex": "\\bar V^*", "qID": "98" }, { "fn": [], "fp": [], "identifier": ["n", "\\delta"], "math_inputtex": "\\;\\frac{(n+\\delta-1)(n+\\delta-2)\\cdots n}{(\\delta-1)!}\\;", "qID": "99" }, { "fn": [], "fp": [], "identifier": ["y_{k}", "n"], "math_inputtex": "y_k[n]", "qID": "100" }] };