mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
135 lines (116 loc) • 4.34 kB
JavaScript
;
var DEFAULT_NORMALIZATION = 'unbiased';
var deepForEach = require('../../utils/collection/deepForEach');
function factory (type, config, load, typed) {
var add = load(require('../arithmetic/addScalar'));
var subtract = load(require('../arithmetic/subtract'));
var multiply = load(require('../arithmetic/multiplyScalar'));
var divide = load(require('../arithmetic/divideScalar'));
var improveErrorMessage = load(require('./utils/improveErrorMessage'));
/**
* Compute the variance of a matrix or a list with values.
* In case of a (multi dimensional) array or matrix, the variance over all
* elements will be calculated.
*
* Optionally, the type of normalization can be specified as second
* parameter. The parameter `normalization` can be one of the following values:
*
* - 'unbiased' (default) The sum of squared errors is divided by (n - 1)
* - 'uncorrected' The sum of squared errors is divided by n
* - 'biased' The sum of squared errors is divided by (n + 1)
*
* Note that older browser may not like the variable name `var`. In that
* case, the function can be called as `math['var'](...)` instead of
* `math.var(...)`.
*
* Syntax:
*
* math.var(a, b, c, ...)
* math.var(A)
* math.var(A, normalization)
*
* Examples:
*
* math.var(2, 4, 6); // returns 4
* math.var([2, 4, 6, 8]); // returns 6.666666666666667
* math.var([2, 4, 6, 8], 'uncorrected'); // returns 5
* math.var([2, 4, 6, 8], 'biased'); // returns 4
*
* math.var([[1, 2, 3], [4, 5, 6]]); // returns 3.5
*
* See also:
*
* mean, median, max, min, prod, std, sum
*
* @param {Array | Matrix} array
* A single matrix or or multiple scalar values
* @param {string} [normalization='unbiased']
* Determines how to normalize the variance.
* Choose 'unbiased' (default), 'uncorrected', or 'biased'.
* @return {*} The variance
*/
var variance = typed('variance', {
// var([a, b, c, d, ...])
'Array | Matrix': function (array) {
return _var(array, DEFAULT_NORMALIZATION);
},
// var([a, b, c, d, ...], normalization)
'Array | Matrix, string': _var,
// var(a, b, c, d, ...)
'...': function (args) {
return _var(args, DEFAULT_NORMALIZATION);
}
});
variance.toTex = '\\mathrm{Var}\\left(${args}\\right)';
return variance;
/**
* Recursively calculate the variance of an n-dimensional array
* @param {Array} array
* @param {string} normalization
* Determines how to normalize the variance:
* - 'unbiased' The sum of squared errors is divided by (n - 1)
* - 'uncorrected' The sum of squared errors is divided by n
* - 'biased' The sum of squared errors is divided by (n + 1)
* @return {number | BigNumber} variance
* @private
*/
function _var(array, normalization) {
var sum = 0;
var num = 0;
if (array.length == 0) {
throw new SyntaxError('Function var requires one or more parameters (0 provided)');
}
// calculate the mean and number of elements
deepForEach(array, function (value) {
try {
sum = add(sum, value);
num++;
}
catch (err) {
throw improveErrorMessage(err, 'var', value);
}
});
if (num === 0) throw new Error('Cannot calculate var of an empty array');
var mean = divide(sum, num);
// calculate the variance
sum = 0;
deepForEach(array, function (value) {
var diff = subtract(value, mean);
sum = add(sum, multiply(diff, diff));
});
switch (normalization) {
case 'uncorrected':
return divide(sum, num);
case 'biased':
return divide(sum, num + 1);
case 'unbiased':
var zero = type.isBigNumber(sum) ? new type.BigNumber(0) : 0;
return (num == 1) ? zero : divide(sum, num - 1);
default:
throw new Error('Unknown normalization "' + normalization + '". ' +
'Choose "unbiased" (default), "uncorrected", or "biased".');
}
}
}
exports.name = 'var';
exports.factory = factory;