mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
169 lines (147 loc) • 4.18 kB
JavaScript
;
var util = require('../../utils/index');
var object = util.object;
var string = util.string;
function factory (type, config, load, typed) {
var matrix = load(require('../../type/matrix/function/matrix'));
var add = load(require('../arithmetic/add'));
var subtract = load(require('../arithmetic/subtract'));
var multiply = load(require('../arithmetic/multiply'));
var unaryMinus = load(require('../arithmetic/unaryMinus'));
/**
* Calculate the determinant of a matrix.
*
* Syntax:
*
* math.det(x)
*
* Examples:
*
* math.det([[1, 2], [3, 4]]); // returns -2
*
* var A = [
* [-2, 2, 3],
* [-1, 1, 3],
* [2, 0, -1]
* ]
* math.det(A); // returns 6
*
* See also:
*
* inv
*
* @param {Array | Matrix} x A matrix
* @return {number} The determinant of `x`
*/
var det = typed('det', {
'any': function (x) {
return object.clone(x);
},
'Array | Matrix': function det (x) {
var size;
if (type.isMatrix(x)) {
size = x.size();
}
else if (Array.isArray(x)) {
x = matrix(x);
size = x.size();
}
else {
// a scalar
size = [];
}
switch (size.length) {
case 0:
// scalar
return object.clone(x);
case 1:
// vector
if (size[0] == 1) {
return object.clone(x.valueOf()[0]);
}
else {
throw new RangeError('Matrix must be square ' +
'(size: ' + string.format(size) + ')');
}
case 2:
// two dimensional array
var rows = size[0];
var cols = size[1];
if (rows == cols) {
return _det(x.clone().valueOf(), rows, cols);
}
else {
throw new RangeError('Matrix must be square ' +
'(size: ' + string.format(size) + ')');
}
default:
// multi dimensional array
throw new RangeError('Matrix must be two dimensional ' +
'(size: ' + string.format(size) + ')');
}
}
});
det.toTex = {1: '\\det\\left(${args[0]}\\right)'};
return det;
/**
* Calculate the determinant of a matrix
* @param {Array[]} matrix A square, two dimensional matrix
* @param {number} rows Number of rows of the matrix (zero-based)
* @param {number} cols Number of columns of the matrix (zero-based)
* @returns {number} det
* @private
*/
function _det (matrix, rows, cols) {
if (rows == 1) {
// this is a 1 x 1 matrix
return object.clone(matrix[0][0]);
}
else if (rows == 2) {
// this is a 2 x 2 matrix
// the determinant of [a11,a12;a21,a22] is det = a11*a22-a21*a12
return subtract(
multiply(matrix[0][0], matrix[1][1]),
multiply(matrix[1][0], matrix[0][1])
);
}
else {
// this is an n x n matrix
var compute_mu = function (matrix) {
var i, j;
// Compute the matrix with zero lower triangle, same upper triangle,
// and diagonals given by the negated sum of the below diagonal
// elements.
var mu = new Array(matrix.length);
var sum = 0;
for (i = 1; i < matrix.length; i++) {
sum = add(sum, matrix[i][i]);
}
for (i = 0; i < matrix.length; i++) {
mu[i] = new Array(matrix.length);
mu[i][i] = unaryMinus(sum);
for (j = 0; j < i; j++) {
mu[i][j] = 0; // TODO: make bignumber 0 in case of bignumber computation
}
for (j = i + 1; j < matrix.length; j++) {
mu[i][j] = matrix[i][j];
}
if (i+1 < matrix.length) {
sum = subtract(sum, matrix[i + 1][i + 1]);
}
}
return mu;
};
var fa = matrix;
for (var i = 0; i < rows - 1; i++) {
fa = multiply(compute_mu(fa), matrix);
}
if (rows % 2 == 0) {
return unaryMinus(fa[0][0]);
} else {
return fa[0][0];
}
}
}
}
exports.name = 'det';
exports.factory = factory;