UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

270 lines (233 loc) 7.19 kB
'use strict'; function factory (type, config, load, typed) { var matrix = load(require('../../type/matrix/function/matrix')); var algorithm01 = load(require('../../type/matrix/utils/algorithm01')); var algorithm02 = load(require('../../type/matrix/utils/algorithm02')); var algorithm06 = load(require('../../type/matrix/utils/algorithm06')); var algorithm11 = load(require('../../type/matrix/utils/algorithm11')); var algorithm13 = load(require('../../type/matrix/utils/algorithm13')); var algorithm14 = load(require('../../type/matrix/utils/algorithm14')); /** * Calculate the nth root of a value. * The principal nth root of a positive real number A, is the positive real * solution of the equation * * x^root = A * * For matrices, the function is evaluated element wise. * * Syntax: * * math.nthRoot(a) * math.nthRoot(a, root) * * Examples: * * math.nthRoot(9, 2); // returns 3, as 3^2 == 9 * math.sqrt(9); // returns 3, as 3^2 == 9 * math.nthRoot(64, 3); // returns 4, as 4^3 == 64 * * See also: * * sqrt, pow * * @param {number | BigNumber | Array | Matrix | Complex} a * Value for which to calculate the nth root * @param {number | BigNumber} [root=2] The root. * @return {number | Complex | Array | Matrix} Returns the nth root of `a` */ var nthRoot = typed('nthRoot', { 'number': function (x) { return _nthRoot(x, 2); }, 'number, number': _nthRoot, 'BigNumber': function (x) { return _bigNthRoot(x, new type.BigNumber(2)); }, 'Complex' : function(x) { return _nthComplexRoot(x, 2); }, 'Complex, number' : _nthComplexRoot, 'BigNumber, BigNumber': _bigNthRoot, 'Array | Matrix': function (x) { return nthRoot(x, 2); }, 'SparseMatrix, SparseMatrix': function (x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // sparse + sparse return algorithm06(x, y, nthRoot); } else { // throw exception throw new Error('Root must be non-zero'); } }, 'SparseMatrix, DenseMatrix': function (x, y) { return algorithm02(y, x, nthRoot, true); }, 'DenseMatrix, SparseMatrix': function (x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // dense + sparse return algorithm01(x, y, nthRoot, false); } else { // throw exception throw new Error('Root must be non-zero'); } }, 'DenseMatrix, DenseMatrix': function (x, y) { return algorithm13(x, y, nthRoot); }, 'Array, Array': function (x, y) { // use matrix implementation return nthRoot(matrix(x), matrix(y)).valueOf(); }, 'Array, Matrix': function (x, y) { // use matrix implementation return nthRoot(matrix(x), y); }, 'Matrix, Array': function (x, y) { // use matrix implementation return nthRoot(x, matrix(y)); }, 'SparseMatrix, number | BigNumber': function (x, y) { return algorithm11(x, y, nthRoot, false); }, 'DenseMatrix, number | BigNumber': function (x, y) { return algorithm14(x, y, nthRoot, false); }, 'number | BigNumber, SparseMatrix': function (x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // sparse - scalar return algorithm11(y, x, nthRoot, true); } else { // throw exception throw new Error('Root must be non-zero'); } }, 'number | BigNumber, DenseMatrix': function (x, y) { return algorithm14(y, x, nthRoot, true); }, 'Array, number | BigNumber': function (x, y) { // use matrix implementation return nthRoot(matrix(x), y).valueOf(); }, 'number | BigNumber, Array': function (x, y) { // use matrix implementation return nthRoot(x, matrix(y)).valueOf(); } }); nthRoot.toTex = {2: '\\sqrt[${args[1]}]{${args[0]}}'}; return nthRoot; /** * Calculate the nth root of a for BigNumbers, solve x^root == a * http://rosettacode.org/wiki/Nth_root#JavaScript * @param {BigNumber} a * @param {BigNumber} root * @private */ function _bigNthRoot(a, root) { var precision = type.BigNumber.precision; var Big = type.BigNumber.clone({precision: precision + 2}); var zero = new type.BigNumber(0); var one = new Big(1); var inv = root.isNegative(); if (inv) { root = root.neg(); } if (root.isZero()) { throw new Error('Root must be non-zero'); } if (a.isNegative() && !root.abs().mod(2).equals(1)) { throw new Error('Root must be odd when a is negative.'); } // edge cases zero and infinity if (a.isZero()) { return inv ? new Big(Infinity) : 0; } if (!a.isFinite()) { return inv ? zero : a; } var x = a.abs().pow(one.div(root)); // If a < 0, we require that root is an odd integer, // so (-1) ^ (1/root) = -1 x = a.isNeg() ? x.neg() : x; return new type.BigNumber((inv ? one.div(x) : x).toPrecision(precision)); } } /** * Calculate the nth root of a, solve x^root == a * http://rosettacode.org/wiki/Nth_root#JavaScript * @param {number} a * @param {number} root * @private */ function _nthRoot(a, root) { var inv = root < 0; if (inv) { root = -root; } if (root === 0) { throw new Error('Root must be non-zero'); } if (a < 0 && (Math.abs(root) % 2 != 1)) { throw new Error('Root must be odd when a is negative.'); } // edge cases zero and infinity if (a == 0) { return inv ? Infinity : 0; } if (!isFinite(a)) { return inv ? 0 : a; } var x = Math.pow(Math.abs(a), 1/root); // If a < 0, we require that root is an odd integer, // so (-1) ^ (1/root) = -1 x = a < 0 ? -x : x; return inv ? 1 / x : x; // Very nice algorithm, but fails with nthRoot(-2, 3). // Newton's method has some well-known problems at times: // https://en.wikipedia.org/wiki/Newton%27s_method#Failure_analysis /* var x = 1; // Initial guess var xPrev = 1; var i = 0; var iMax = 10000; do { var delta = (a / Math.pow(x, root - 1) - x) / root; xPrev = x; x = x + delta; i++; } while (xPrev !== x && i < iMax); if (xPrev !== x) { throw new Error('Function nthRoot failed to converge'); } return inv ? 1 / x : x; */ } /** * Calculate the nth root of a Complex Number a using De Moviers Theorem. * @param {Complex} a * @param {number} root * @return {Array} array or n Complex Roots in Polar Form. */ function _nthComplexRoot(a, root) { if (root < 0) throw new Error('Root must be greater than zero'); if (root === 0) throw new Error('Root must be non-zero'); if (root % 1 !== 0) throw new Error('Root must be an integer'); var arg = a.arg(); var abs = a.abs(); var roots = []; var r = Math.pow(abs, 1/root); for(var k = 0; k < root; k++) { roots.push({r: r, phi: (arg + 2 * Math.PI * k)/root}); } return roots; } exports.name = 'nthRoot'; exports.factory = factory;