mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
270 lines (233 loc) • 7.19 kB
JavaScript
;
function factory (type, config, load, typed) {
var matrix = load(require('../../type/matrix/function/matrix'));
var algorithm01 = load(require('../../type/matrix/utils/algorithm01'));
var algorithm02 = load(require('../../type/matrix/utils/algorithm02'));
var algorithm06 = load(require('../../type/matrix/utils/algorithm06'));
var algorithm11 = load(require('../../type/matrix/utils/algorithm11'));
var algorithm13 = load(require('../../type/matrix/utils/algorithm13'));
var algorithm14 = load(require('../../type/matrix/utils/algorithm14'));
/**
* Calculate the nth root of a value.
* The principal nth root of a positive real number A, is the positive real
* solution of the equation
*
* x^root = A
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.nthRoot(a)
* math.nthRoot(a, root)
*
* Examples:
*
* math.nthRoot(9, 2); // returns 3, as 3^2 == 9
* math.sqrt(9); // returns 3, as 3^2 == 9
* math.nthRoot(64, 3); // returns 4, as 4^3 == 64
*
* See also:
*
* sqrt, pow
*
* @param {number | BigNumber | Array | Matrix | Complex} a
* Value for which to calculate the nth root
* @param {number | BigNumber} [root=2] The root.
* @return {number | Complex | Array | Matrix} Returns the nth root of `a`
*/
var nthRoot = typed('nthRoot', {
'number': function (x) {
return _nthRoot(x, 2);
},
'number, number': _nthRoot,
'BigNumber': function (x) {
return _bigNthRoot(x, new type.BigNumber(2));
},
'Complex' : function(x) {
return _nthComplexRoot(x, 2);
},
'Complex, number' : _nthComplexRoot,
'BigNumber, BigNumber': _bigNthRoot,
'Array | Matrix': function (x) {
return nthRoot(x, 2);
},
'SparseMatrix, SparseMatrix': function (x, y) {
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// sparse + sparse
return algorithm06(x, y, nthRoot);
}
else {
// throw exception
throw new Error('Root must be non-zero');
}
},
'SparseMatrix, DenseMatrix': function (x, y) {
return algorithm02(y, x, nthRoot, true);
},
'DenseMatrix, SparseMatrix': function (x, y) {
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// dense + sparse
return algorithm01(x, y, nthRoot, false);
}
else {
// throw exception
throw new Error('Root must be non-zero');
}
},
'DenseMatrix, DenseMatrix': function (x, y) {
return algorithm13(x, y, nthRoot);
},
'Array, Array': function (x, y) {
// use matrix implementation
return nthRoot(matrix(x), matrix(y)).valueOf();
},
'Array, Matrix': function (x, y) {
// use matrix implementation
return nthRoot(matrix(x), y);
},
'Matrix, Array': function (x, y) {
// use matrix implementation
return nthRoot(x, matrix(y));
},
'SparseMatrix, number | BigNumber': function (x, y) {
return algorithm11(x, y, nthRoot, false);
},
'DenseMatrix, number | BigNumber': function (x, y) {
return algorithm14(x, y, nthRoot, false);
},
'number | BigNumber, SparseMatrix': function (x, y) {
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// sparse - scalar
return algorithm11(y, x, nthRoot, true);
}
else {
// throw exception
throw new Error('Root must be non-zero');
}
},
'number | BigNumber, DenseMatrix': function (x, y) {
return algorithm14(y, x, nthRoot, true);
},
'Array, number | BigNumber': function (x, y) {
// use matrix implementation
return nthRoot(matrix(x), y).valueOf();
},
'number | BigNumber, Array': function (x, y) {
// use matrix implementation
return nthRoot(x, matrix(y)).valueOf();
}
});
nthRoot.toTex = {2: '\\sqrt[${args[1]}]{${args[0]}}'};
return nthRoot;
/**
* Calculate the nth root of a for BigNumbers, solve x^root == a
* http://rosettacode.org/wiki/Nth_root#JavaScript
* @param {BigNumber} a
* @param {BigNumber} root
* @private
*/
function _bigNthRoot(a, root) {
var precision = type.BigNumber.precision;
var Big = type.BigNumber.clone({precision: precision + 2});
var zero = new type.BigNumber(0);
var one = new Big(1);
var inv = root.isNegative();
if (inv) {
root = root.neg();
}
if (root.isZero()) {
throw new Error('Root must be non-zero');
}
if (a.isNegative() && !root.abs().mod(2).equals(1)) {
throw new Error('Root must be odd when a is negative.');
}
// edge cases zero and infinity
if (a.isZero()) {
return inv ? new Big(Infinity) : 0;
}
if (!a.isFinite()) {
return inv ? zero : a;
}
var x = a.abs().pow(one.div(root));
// If a < 0, we require that root is an odd integer,
// so (-1) ^ (1/root) = -1
x = a.isNeg() ? x.neg() : x;
return new type.BigNumber((inv ? one.div(x) : x).toPrecision(precision));
}
}
/**
* Calculate the nth root of a, solve x^root == a
* http://rosettacode.org/wiki/Nth_root#JavaScript
* @param {number} a
* @param {number} root
* @private
*/
function _nthRoot(a, root) {
var inv = root < 0;
if (inv) {
root = -root;
}
if (root === 0) {
throw new Error('Root must be non-zero');
}
if (a < 0 && (Math.abs(root) % 2 != 1)) {
throw new Error('Root must be odd when a is negative.');
}
// edge cases zero and infinity
if (a == 0) {
return inv ? Infinity : 0;
}
if (!isFinite(a)) {
return inv ? 0 : a;
}
var x = Math.pow(Math.abs(a), 1/root);
// If a < 0, we require that root is an odd integer,
// so (-1) ^ (1/root) = -1
x = a < 0 ? -x : x;
return inv ? 1 / x : x;
// Very nice algorithm, but fails with nthRoot(-2, 3).
// Newton's method has some well-known problems at times:
// https://en.wikipedia.org/wiki/Newton%27s_method#Failure_analysis
/*
var x = 1; // Initial guess
var xPrev = 1;
var i = 0;
var iMax = 10000;
do {
var delta = (a / Math.pow(x, root - 1) - x) / root;
xPrev = x;
x = x + delta;
i++;
}
while (xPrev !== x && i < iMax);
if (xPrev !== x) {
throw new Error('Function nthRoot failed to converge');
}
return inv ? 1 / x : x;
*/
}
/**
* Calculate the nth root of a Complex Number a using De Moviers Theorem.
* @param {Complex} a
* @param {number} root
* @return {Array} array or n Complex Roots in Polar Form.
*/
function _nthComplexRoot(a, root) {
if (root < 0) throw new Error('Root must be greater than zero');
if (root === 0) throw new Error('Root must be non-zero');
if (root % 1 !== 0) throw new Error('Root must be an integer');
var arg = a.arg();
var abs = a.abs();
var roots = [];
var r = Math.pow(abs, 1/root);
for(var k = 0; k < root; k++) {
roots.push({r: r, phi: (arg + 2 * Math.PI * k)/root});
}
return roots;
}
exports.name = 'nthRoot';
exports.factory = factory;