mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
158 lines (146 loc) • 4.13 kB
JavaScript
;
function factory(type, config, load, typed, math) {
var FunctionNode = math.expression.node.FunctionNode;
var OperatorNode = math.expression.node.OperatorNode;
var SymbolNode = math.expression.node.SymbolNode;
// TODO commutative/associative properties rely on the arguments
// e.g. multiply is not commutative for matrices
// The properties should be calculated from an argument to simplify, or possibly something in math.config
// the other option is for typed() to specify a return type so that we can evaluate the type of arguments
var commutative = {
'add': true,
'multiply': true
}
var associative = {
'add': true,
'multiply': true
}
function isCommutative(node, context) {
if (!type.isOperatorNode(node)) {
return true;
}
var name = node.fn.toString();
if (context && context.hasOwnProperty(name) && context[name].hasOwnProperty('commutative')) {
return context[name].commutative;
}
return commutative[name] || false;
}
function isAssociative(node, context) {
if (!type.isOperatorNode(node)) {
return false;
}
var name = node.fn.toString();
if (context && context.hasOwnProperty(name) && context[name].hasOwnProperty('associative')) {
return context[name].associative;
}
return associative[name] || false;
}
/**
* Flatten all associative operators in an expression tree.
* Assumes parentheses have already been removed.
*/
function flatten(node) {
if (!node.args || node.args.length === 0) {
return node;
}
node.args = allChildren(node);
for (var i=0; i<node.args.length; i++) {
flatten(node.args[i]);
}
}
/**
* Get the children of a node as if it has been flattened.
* TODO implement for FunctionNodes
*/
function allChildren(node) {
var op;
var children = [];
var findChildren = function(node) {
for (var i = 0; i < node.args.length; i++) {
var child = node.args[i];
if (type.isOperatorNode(child) && op === child.op) {
findChildren(child);
}
else {
children.push(child);
}
}
};
if (isAssociative(node)) {
op = node.op;
findChildren(node);
return children;
}
else {
return node.args;
}
}
/**
* Unflatten all flattened operators to a right-heavy binary tree.
*/
function unflattenr(node) {
if (!node.args || node.args.length === 0) {
return;
}
var makeNode = createMakeNodeFunction(node);
var l = node.args.length;
for (var i = 0; i < l; i++) {
unflattenr(node.args[i])
}
if (l > 2 && isAssociative(node)) {
var curnode = node.args.pop();
while (node.args.length > 0) {
curnode = makeNode([node.args.pop(), curnode]);
}
node.args = curnode.args;
}
}
/**
* Unflatten all flattened operators to a left-heavy binary tree.
*/
function unflattenl(node) {
if (!node.args || node.args.length === 0) {
return;
}
var makeNode = createMakeNodeFunction(node);
var l = node.args.length;
for (var i = 0; i < l; i++) {
unflattenl(node.args[i])
}
if (l > 2 && isAssociative(node)) {
var curnode = node.args.shift();
while (node.args.length > 0) {
curnode = makeNode([curnode, node.args.shift()]);
}
node.args = curnode.args;
}
}
function createMakeNodeFunction(node) {
if (type.isOperatorNode(node)) {
return function(args){
try{
return new OperatorNode(node.op, node.fn, args);
} catch(err){
console.error(err);
return [];
}
};
}
else {
return function(args){
return new FunctionNode(new SymbolNode(node.name), args);
};
}
}
return {
createMakeNodeFunction: createMakeNodeFunction,
isCommutative: isCommutative,
isAssociative: isAssociative,
flatten: flatten,
allChildren: allChildren,
unflattenr: unflattenr,
unflattenl: unflattenl
};
}
exports.factory = factory;
exports.math = true;