UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

607 lines (524 loc) 25 kB
'use strict'; function factory (type, config, load, typed) { var simplify = load(require('./simplify')); var simplifyCore = load(require('./simplify/simplifyCore')); var simplifyConstant = load(require('./simplify/simplifyConstant')); var ArgumentsError = require('../../error/ArgumentsError'); var parse = load(require('../../expression/function/parse')); var number = require('../../utils/number') var ConstantNode = load(require('../../expression/node/ConstantNode')); var OperatorNode = load(require('../../expression/node/OperatorNode')); var SymbolNode = load(require('../../expression/node/SymbolNode')); /** * Transform a rationalizable expression in a rational fraction. * If rational fraction is one variable polynomial then converts * the numerator and denominator in canonical form, with decreasing * exponents, returning the coefficients of numerator. * * Syntax: * * rationalize(expr) * rationalize(expr, detailed) * rationalize(expr, scope) * rationalize(expr, scope, detailed) * * Examples: * * math.rationalize('sin(x)+y') // Error: There is an unsolved function call * math.rationalize('2x/y - y/(x+1)') // (2*x^2-y^2+2*x)/(x*y+y) * math.rationalize('(2x+1)^6') * // 64*x^6+192*x^5+240*x^4+160*x^3+60*x^2+12*x+1 * math.rationalize('2x/( (2x-1) / (3x+2) ) - 5x/ ( (3x+4) / (2x^2-5) ) + 3') * // -20*x^4+28*x^3+104*x^2+6*x-12)/(6*x^2+5*x-4) * math.rationalize('x/(1-x)/(x-2)/(x-3)/(x-4) + 2x/ ( (1-2x)/(2-3x) )/ ((3-4x)/(4-5x) )') = * // (-30*x^7+344*x^6-1506*x^5+3200*x^4-3472*x^3+1846*x^2-381*x)/ * // (-8*x^6+90*x^5-383*x^4+780*x^3-797*x^2+390*x-72) * * math.rationalize('x+x+x+y',{y:1}) // 3*x+1 * math.rationalize('x+x+x+y',{}) // 3*x+y * ret = math.rationalize('x+x+x+y',{},true) * // ret.expression=3*x+y, ret.variables = ["x","y"] * ret = math.rationalize('-2+5x^2',{},true) * // ret.expression=5*x^2-2, ret.variables = ["x"], ret.coefficients=[-2,0,5] * * See also: * * simplify * * @param {Node|string} expr The expression to check if is a polynomial expression * @param {Object|boolean} optional scope of expression or true for already evaluated rational expression at input * @param {Boolean} detailed optional True if return an object, false if return expression node (default) * * @return {Object | Expression Node} The rational polynomial of `expr` or na object * {Object} * {Expression Node} expression: node simplified expression * {Expression Node} numerator: simplified numerator of expression * {Expression Node | boolean} denominator: simplified denominator or false (if there is no denominator) * {Array} variables: variable names * {Array} coefficients: coefficients of numerator sorted by increased exponent * {Expression Node} node simplified expression * */ var rationalize = typed('rationalize', { 'string': function (expr) { return rationalize(parse(expr), {}, false); }, 'string, boolean': function (expr, detailed) { return rationalize(parse(expr), {} , detailed); }, 'string, Object': function (expr, scope) { return rationalize(parse(expr), scope, false); }, 'string, Object, boolean': function (expr, scope, detailed) { return rationalize(parse(expr), scope, detailed); }, 'Node': function (expr) { return rationalize(expr, {}, false); }, 'Node, boolean': function (expr, detailed) { return rationalize(expr, {}, detailed); }, 'Node, Object': function (expr, scope) { return rationalize(expr, scope, false); }, 'Node, Object, boolean': function (expr, scope, detailed) { var polyRet = polynomial(expr, scope, true) // Check if expression is a rationalizable polynomial var nVars = polyRet.variables.length; var expr = polyRet.expression; if (nVars>=1) { // If expression in not a constant var setRules = rulesRationalize(); // Rules for change polynomial in near canonical form expr = expandPower(expr); // First expand power of polynomials (cannot be made from rules!) var redoInic = true; // If has change after start, redo the beginning var s = ""; // New expression var sBefore; // Previous expression var rules; var eDistrDiv = true expr = simplify(expr, setRules.firstRules); // Apply the initial rules, including succ div rules s = expr.toString(); while (true) { // Apply alternately successive division rules and distr.div.rules rules = eDistrDiv ? setRules.distrDivRules : setRules.sucDivRules expr = simplify(expr,rules); // until no more changes eDistrDiv = ! eDistrDiv; // Swap between Distr.Div and Succ. Div. Rules s = expr.toString(); if (s===sBefore) break // No changes : end of the loop redoInic = true; sBefore = s; } if (redoInic) { // Apply first rules again without succ div rules (if there are changes) expr = simplify(expr,setRules.firstRulesAgain); } expr = simplify(expr,setRules.finalRules); // Aplly final rules } // NVars >= 1 var coefficients=[]; var retRationalize = {}; if (expr.type === 'OperatorNode' && expr.isBinary() && expr.op === '/') { // Separate numerator from denominator if (nVars==1) { expr.args[0] = polyToCanonical(expr.args[0],coefficients); expr.args[1] = polyToCanonical(expr.args[1]); } if (detailed) { retRationalize.numerator = expr.args[0]; retRationalize.denominator = expr.args[1]; } } else { if (nVars==1) expr = polyToCanonical(expr,coefficients); if (detailed) { retRationalize.numerator = expr; retRationalize.denominator = null } } // nVars if (! detailed) return expr; retRationalize.coefficients = coefficients; retRationalize.variables = polyRet.variables; retRationalize.expression = expr; return retRationalize; } // ^^^^^^^ end of rationalize ^^^^^^^^ }); // end of typed rationalize /** * Function to simplify an expression using an optional scope and * return it if the expression is a polynomial expression, i.e. * an expression with one or more variables and the operators * +, -, *, and ^, where the exponent can only be a positive integer. * * Syntax: * * polynomial(expr,scope,extended) * * @param {Node | string} expr The expression to simplify and check if is polynomial expression * @param {object} scope Optional scope for expression simplification * @param {boolean} extended Optional. Default is false. When true allows divide operator. * * * @return {Object} * {Object} node: node simplified expression * {Array} variables: variable names */ function polynomial (expr, scope, extended) { var variables = []; var node = simplify(expr,scope); // Resolves any variables and functions with all defined parameters extended = !! extended var oper = '+-*' + (extended ? '/' : ''); recPoly(node) var retFunc ={}; retFunc.expression = node; retFunc.variables = variables; return retFunc; //------------------------------------------------------------------------------------------------------- /** * Function to simplify an expression using an optional scope and * return it if the expression is a polynomial expression, i.e. * an expression with one or more variables and the operators * +, -, *, and ^, where the exponent can only be a positive integer. * * Syntax: * * recPoly(node) * * * @param {Node} node The current sub tree expression in recursion * * @return nothing, throw an exception if error */ function recPoly(node) { var tp = node.type; // node type if (tp==='FunctionNode') throw new ArgumentsError('There is an unsolved function call') // No function call in polynomial expression else if (tp==='OperatorNode') { if (node.op === '^' && node.isBinary()) { if (node.args[1].type!=='ConstantNode' || ! number.isInteger(parseFloat(node.args[1].value))) throw new ArgumentsError('There is a non-integer exponent'); else recPoly(node.args[0]); } else { if (oper.indexOf(node.op) === -1) throw new ArgumentsError('Operator ' + node.op + ' invalid in polynomial expression'); for (var i=0;i<node.args.length;i++) { recPoly(node.args[i]); } } // type of operator } else if (tp==='SymbolNode') { var name = node.name; // variable name var pos = variables.indexOf(name); if (pos===-1) // new variable in expression variables.push(name); } else if (tp==='ParenthesisNode') recPoly(node.content); else if (tp!=='ConstantNode') throw new ArgumentsError('type ' + tp + ' is not allowed in polynomial expression') } // end of recPoly } // end of polynomial //--------------------------------------------------------------------------------------- /** * Return a rule set to rationalize an polynomial expression in rationalize * * Syntax: * * rulesRationalize() * * @return {array} rule set to rationalize an polynomial expression */ function rulesRationalize() { var oldRules = [simplifyCore, // sCore {l:"n+n",r:"2*n"}, {l:"n+-n",r:"0"}, simplifyConstant, // sConstant {l:"n*(n1^-1)",r:"n/n1"}, {l:"n*n1^-n2",r:"n/n1^n2"}, {l:"n1^-1",r:"1/n1"}, {l:"n*(n1/n2)",r:"(n*n1)/n2"}, {l:"1*n",r:"n"}] var rulesFirst = [ { l: '(-n1)/(-n2)', r: 'n1/n2' }, // Unary division { l: '(-n1)*(-n2)', r: 'n1*n2' }, // Unary multiplication { l: 'n1--n2', r:'n1+n2'}, // '--' elimination { l: 'n1-n2', r:'n1+(-n2)'} , // Subtraction turn into add with un�ry minus { l:'(n1+n2)*n3', r:'(n1*n3 + n2*n3)' }, // Distributive 1 { l:'n1*(n2+n3)', r:'(n1*n2+n1*n3)' }, // Distributive 2 { l: 'c1*n + c2*n', r:'(c1+c2)*n'} , // Joining constants { l: '-v*-c', r:'c*v'} , // Inversion constant and variable 1 { l: '-v*c', r:'-c*v'} , // Inversion constant and variable 2 { l: 'v*-c', r:'-c*v'} , // Inversion constant and variable 3 { l: 'v*c', r:'c*v'} , // Inversion constant and variable 4 { l: '-(-n1*n2)', r:'(n1*n2)'} , // Unary propagation { l: '-(n1*n2)', r:'(-n1*n2)'} , // Unary propagation { l: '-(-n1+n2)', r:'(n1-n2)'} , // Unary propagation { l: '-(n1+n2)', r:'(-n1-n2)'} , // Unary propagation { l: '(n1^n2)^n3', r:'(n1^(n2*n3))'} , // Power to Power { l: '-(-n1/n2)', r:'(n1/n2)'} , // Division and Unary { l: '-(n1/n2)', r:'(-n1/n2)'} ]; // Divisao and Unary var rulesDistrDiv=[ { l:'(n1/n2 + n3/n4)', r:'((n1*n4 + n3*n2)/(n2*n4))' }, // Sum of fractions { l:'(n1/n2 + n3)', r:'((n1 + n3*n2)/n2)' }, // Sum fraction with number 1 { l:'(n1 + n2/n3)', r:'((n1*n3 + n2)/n3)' } ]; // Sum fraction with number 1 var rulesSucDiv=[ { l:'(n1/(n2/n3))', r:'((n1*n3)/n2)'} , // Division simplification { l:'(n1/n2/n3)', r:'(n1/(n2*n3))' } ] var setRules={}; // rules set in 4 steps. // All rules => infinite loop // setRules.allRules =oldRules.concat(rulesFirst,rulesDistrDiv,rulesSucDiv); setRules.firstRules =oldRules.concat(rulesFirst,rulesSucDiv); // First rule set setRules.distrDivRules = rulesDistrDiv; // Just distr. div. rules setRules.sucDivRules = rulesSucDiv; // Jus succ. div. rules setRules.firstRulesAgain = oldRules.concat(rulesFirst); // Last rules set without succ. div. // Division simplification // Second rule set. // There is no aggregate expression with parentesis, but the only variable can be scattered. setRules.finalRules=[ simplifyCore, // simplify.rules[0] { l: 'n*-n', r: '-n^2' }, // Joining multiply with power 1 { l: 'n*n', r: 'n^2' }, // Joining multiply with power 2 simplifyConstant, // simplify.rules[14] old 3rd index in oldRules { l: 'n*-n^n1', r: '-n^(n1+1)' }, // Joining multiply with power 3 { l: 'n*n^n1', r: 'n^(n1+1)' }, // Joining multiply with power 4 { l: 'n^n1*-n^n2', r: '-n^(n1+n2)' }, // Joining multiply with power 5 { l: 'n^n1*n^n2', r: 'n^(n1+n2)' }, // Joining multiply with power 6 { l: 'n^n1*-n', r: '-n^(n1+1)' }, // Joining multiply with power 7 { l: 'n^n1*n', r: 'n^(n1+1)' }, // Joining multiply with power 8 { l: 'n^n1/-n', r: '-n^(n1-1)' }, // Joining multiply with power 8 { l: 'n^n1/n', r: 'n^(n1-1)' }, // Joining division with power 1 { l: 'n/-n^n1', r: '-n^(1-n1)' }, // Joining division with power 2 { l: 'n/n^n1', r: 'n^(1-n1)' }, // Joining division with power 3 { l: 'n^n1/-n^n2', r: 'n^(n1-n2)' }, // Joining division with power 4 { l: 'n^n1/n^n2', r: 'n^(n1-n2)' }, // Joining division with power 5 { l: 'n1+(-n2*n3)', r: 'n1-n2*n3' }, // Solving useless parenthesis 1 { l: 'v*(-c)', r: '-c*v' }, // Solving useless unary 2 { l: 'n1+-n2', r: 'n1-n2' }, // Solving +- together (new!) { l: 'v*c', r: 'c*v' }, // inversion constant with variable { l: '(n1^n2)^n3', r:'(n1^(n2*n3))'}, // Power to Power ]; return setRules; } // End rulesRationalize //--------------------------------------------------------------------------------------- /** * Expand recursively a tree node for handling with expressions with exponents * (it's not for constants, symbols or functions with exponents) * PS: The other parameters are internal for recursion * * Syntax: * * expandPower(node) * * @param {Node} node Current expression node * @param {node} parent Parent current node inside the recursion * @param (int} Parent number of chid inside the rercursion * * @return {node} node expression with all powers expanded. */ function expandPower(node,parent,indParent) { var tp = node.type; var internal = (arguments.length>1) // TRUE in internal calls if (tp === 'OperatorNode' && node.isBinary()) { var does = false; if (node.op==='^') { // First operator: Parenthesis or UnaryMinus if ( ( node.args[0].type==='ParenthesisNode' || node.args[0].type==='OperatorNode' ) && (node.args[1].type==='ConstantNode') ) { // Second operator: Constant var val = parseFloat(node.args[1].value); does = (val>=2 && number.isInteger(val)); } } if (does) { // Exponent >= 2 //Before: // operator A --> Subtree // parent pow // constant // if (val>2) { // Exponent > 2, //AFTER: (exponent > 2) // operator A --> Subtree // parent * // deep clone (operator A --> Subtree // pow // constant - 1 // var nEsqTopo = node.args[0]; var nDirTopo = new OperatorNode('^', 'pow', [node.args[0].cloneDeep(),new ConstantNode(val-1)]); node = new OperatorNode('*', 'multiply', [nEsqTopo, nDirTopo]); } else // Expo = 2 - no power //AFTER: (exponent = 2) // operator A --> Subtree // parent oper // deep clone (operator A --> Subtree) // node = new OperatorNode('*', 'multiply', [node.args[0], node.args[0].cloneDeep()]); if (internal) // Change parent references in internal recursive calls if (indParent==='content') parent.content = node; else parent.args[indParent] = node } // does } // binary OperatorNode if (tp==='ParenthesisNode' ) // Recursion expandPower(node.content,node,'content'); else if (tp!=='ConstantNode' && tp!=='SymbolNode') for (var i=0;i<node.args.length;i++) expandPower(node.args[i],node,i); if (! internal ) return node // return the root node } // End expandPower //--------------------------------------------------------------------------------------- /** * Auxilary function for rationalize * Convert near canonical polynomial in one variable in a canonical polynomial * with one term for each exponent in decreasing order * * Syntax: * * polyToCanonical(node [, coefficients]) * * @param {Node | string} expr The near canonical polynomial expression to convert in a a canonical polynomial expression * * The string or tree expression needs to be at below syntax, with free spaces: * ( (^(-)? | [+-]? )cte (*)? var (^expo)? | cte )+ * Where 'var' is one variable with any valid name * 'cte' are real numeric constants with any value. It can be omitted if equal than 1 * 'expo' are integers greater than 0. It can be omitted if equal than 1. * * @param {array} coefficients Optional returns coefficients sorted by increased exponent * * * @return {node} new node tree with one variable polynomial or string error. */ function polyToCanonical(node,coefficients) { var i; if (coefficients===undefined) coefficients = []; // coefficients. coefficients[0] = 0; // index is the exponent var o = {}; o.cte=1; o.oper='+'; // fire: mark with * or ^ when finds * or ^ down tree, reset to "" with + and -. // It is used to deduce the exponent: 1 for *, 0 for "". o.fire=''; var maxExpo=0; // maximum exponent var varname=''; // var name recurPol(node,null,o); maxExpo = coefficients.length-1; var first=true; for (i=maxExpo;i>=0 ;i--) { if (coefficients[i]===0) continue; var n1 = new ConstantNode( first ? coefficients[i] : Math.abs(coefficients[i])); var op = coefficients[i]<0 ? '-' : '+'; if (i>0) { // Is not a constant without variable var n2 = new SymbolNode(varname); if (i>1) { var n3 = new ConstantNode(i); n2 = new OperatorNode('^', 'pow', [n2, n3]); } if (coefficients[i]===-1 && first) n1 = new OperatorNode('-', 'unaryMinus', [n2]); else if (Math.abs(coefficients[i])===1) n1 = n2; else n1 = new OperatorNode('*', 'multiply', [n1, n2]); } var no; if (first) no = n1; else if (op==='+') no = new OperatorNode('+', 'add', [no, n1]); else no = new OperatorNode('-', 'subtract', [no, n1]); first = false; } // for if (first) return new ConstantNode(0); else return no; /** * Recursive auxilary function inside polyToCanonical for * converting expression in canonical form * * Syntax: * * recurPol(node, noPai, obj) * * @param {Node} node The current subpolynomial expression * @param {Node | Null} noPai The current parent node * @param {object} obj Object with many internal flags * * @return {} No return. If error, throws an exception */ function recurPol(node,noPai,o) { var tp = node.type; if (tp==='FunctionNode') // ***** FunctionName ***** // No function call in polynomial expression throw new ArgumentsError('There is an unsolved function call') else if (tp==='OperatorNode') { // ***** OperatorName ***** if ('+-*^'.indexOf(node.op) === -1) throw new ArgumentsError('Operator ' + node.op + ' invalid'); if (noPai!==null) { // -(unary),^ : children of *,+,- if ( (node.fn==='unaryMinus' || node.fn==='pow') && noPai.fn !=='add' && noPai.fn!=='subtract' && noPai.fn!=='multiply' ) throw new ArgumentsError('Invalid ' + node.op + ' placing') // -,+,* : children of +,- if ((node.fn==='subtract' || node.fn==='add' || node.fn==='multiply') && noPai.fn!=='add' && noPai.fn!=='subtract' ) throw new ArgumentsError('Invalid ' + node.op + ' placing'); // -,+ : first child if ((node.fn==='subtract' || node.fn==='add' || node.fn==='unaryMinus' ) && o.noFil!==0 ) throw new ArgumentsError('Invalid ' + node.op + ' placing') } // Has parent // Firers: ^,* Old: ^,&,-(unary): firers if (node.op==='^' || node.op==='*') o.fire = node.op; for (var i=0;i<node.args.length;i++) { // +,-: reset fire if (node.fn==='unaryMinus') o.oper='-'; if (node.op==='+' || node.fn==='subtract' ) { o.fire = ''; o.cte = 1; // default if there is no constant o.oper = (i===0 ? '+' : node.op); } o.noFil = i; // number of son recurPol(node.args[i],node,o); } // for in children } else if (tp==='SymbolNode') { // ***** SymbolName ***** if (node.name !== varname && varname!=='') throw new ArgumentsError('There is more than one variable') varname = node.name; if (noPai === null) { coefficients[1] = 1; return; } // ^: Symbol is First child if (noPai.op==='^' && o.noFil!==0 ) throw new ArgumentsError('In power the variable should be the first parameter') // *: Symbol is Second child if (noPai.op==='*' && o.noFil!==1 ) throw new ArgumentsError('In multiply the variable should be the second parameter') // Symbol: firers '',* => it means there is no exponent above, so it's 1 (cte * var) if (o.fire==='' || o.fire==='*' ) { if (maxExpo<1) coefficients[1]=0; coefficients[1] += o.cte* (o.oper==='+' ? 1 : -1); maxExpo = Math.max(1,maxExpo); } } else if (tp==='ConstantNode') { var valor = parseFloat(node.value); if (noPai === null) { coefficients[0] = valor; return; } if (noPai.op==='^') { // cte: second child of power if (o.noFil!==1) throw new ArgumentsError('Constant cannot be powered') if (! number.isInteger(valor) || valor<=0 ) throw new ArgumentsError('Non-integer exponent is not allowed'); for (var i=maxExpo+1;i<valor;i++) coefficients[i]=0; if (valor>maxExpo) coefficients[valor]=0; coefficients[valor] += o.cte * (o.oper==='+' ? 1 : -1) maxExpo = Math.max(valor,maxExpo); return; } o.cte = valor; // Cte: firer '' => There is no exponent and no multiplication, so the exponent is 0. if (o.fire==='') coefficients[0] += o.cte * (o.oper==='+'? 1 : -1); } else throw new ArgumentsError('Type ' + tp + ' is not allowed'); return; } // End of recurPol } // End of polyToCanonical return rationalize; } // end of factory exports.name = 'rationalize'; exports.factory = factory;