mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
112 lines (102 loc) • 3.69 kB
JavaScript
import { factory } from '../../../utils/factory.js';
import { DimensionError } from '../../../error/DimensionError.js';
var name = 'matAlgo01xDSid';
var dependencies = ['typed'];
export var createMatAlgo01xDSid = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed
} = _ref;
/**
* Iterates over SparseMatrix nonzero items and invokes the callback function f(Dij, Sij).
* Callback function invoked NNZ times (number of nonzero items in SparseMatrix).
*
*
* ┌ f(Dij, Sij) ; S(i,j) !== 0
* C(i,j) = ┤
* └ Dij ; otherwise
*
*
* @param {Matrix} denseMatrix The DenseMatrix instance (D)
* @param {Matrix} sparseMatrix The SparseMatrix instance (S)
* @param {Function} callback The f(Dij,Sij) operation to invoke, where Dij = DenseMatrix(i,j) and Sij = SparseMatrix(i,j)
* @param {boolean} inverse A true value indicates callback should be invoked f(Sij,Dij)
*
* @return {Matrix} DenseMatrix (C)
*
* see https://github.com/josdejong/mathjs/pull/346#issuecomment-97477571
*/
return function algorithm1(denseMatrix, sparseMatrix, callback, inverse) {
// dense matrix arrays
var adata = denseMatrix._data;
var asize = denseMatrix._size;
var adt = denseMatrix._datatype || denseMatrix.getDataType();
// sparse matrix arrays
var bvalues = sparseMatrix._values;
var bindex = sparseMatrix._index;
var bptr = sparseMatrix._ptr;
var bsize = sparseMatrix._size;
var bdt = sparseMatrix._datatype || sparseMatrix._data === undefined ? sparseMatrix._datatype : sparseMatrix.getDataType();
// validate dimensions
if (asize.length !== bsize.length) {
throw new DimensionError(asize.length, bsize.length);
}
// check rows & columns
if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) {
throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')');
}
// sparse matrix cannot be a Pattern matrix
if (!bvalues) {
throw new Error('Cannot perform operation on Dense Matrix and Pattern Sparse Matrix');
}
// rows & columns
var rows = asize[0];
var columns = asize[1];
// process data types
var dt = typeof adt === 'string' && adt !== 'mixed' && adt === bdt ? adt : undefined;
// callback function
var cf = dt ? typed.find(callback, [dt, dt]) : callback;
// vars
var i, j;
// result (DenseMatrix)
var cdata = [];
// initialize c
for (i = 0; i < rows; i++) {
cdata[i] = [];
}
// workspace
var x = [];
// marks indicating we have a value in x for a given column
var w = [];
// loop columns in b
for (j = 0; j < columns; j++) {
// column mark
var mark = j + 1;
// values in column j
for (var k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) {
// row
i = bindex[k];
// update workspace
x[i] = inverse ? cf(bvalues[k], adata[i][j]) : cf(adata[i][j], bvalues[k]);
// mark i as updated
w[i] = mark;
}
// loop rows
for (i = 0; i < rows; i++) {
// check row is in workspace
if (w[i] === mark) {
// c[i][j] was already calculated
cdata[i][j] = x[i];
} else {
// item does not exist in S
cdata[i][j] = adata[i][j];
}
}
}
// return dense matrix
return denseMatrix.createDenseMatrix({
data: cdata,
size: [rows, columns],
datatype: adt === denseMatrix._datatype && bdt === sparseMatrix._datatype ? dt : undefined
});
};
});