UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

159 lines (149 loc) 5.06 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createMatAlgo06xS0S0 = void 0; var _factory = require("../../../utils/factory.js"); var _DimensionError = require("../../../error/DimensionError.js"); var _collection = require("../../../utils/collection.js"); const name = 'matAlgo06xS0S0'; const dependencies = ['typed', 'equalScalar']; const createMatAlgo06xS0S0 = exports.createMatAlgo06xS0S0 = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { typed, equalScalar } = _ref; /** * Iterates over SparseMatrix A and SparseMatrix B nonzero items and invokes the callback function f(Aij, Bij). * Callback function invoked (Anz U Bnz) times, where Anz and Bnz are the nonzero elements in both matrices. * * * ┌ f(Aij, Bij) ; A(i,j) !== 0 && B(i,j) !== 0 * C(i,j) = ┤ * └ 0 ; otherwise * * * @param {Matrix} a The SparseMatrix instance (A) * @param {Matrix} b The SparseMatrix instance (B) * @param {Function} callback The f(Aij,Bij) operation to invoke * * @return {Matrix} SparseMatrix (C) * * see https://github.com/josdejong/mathjs/pull/346#issuecomment-97620294 */ return function matAlgo06xS0S0(a, b, callback) { // sparse matrix arrays const avalues = a._values; const asize = a._size; const adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType(); // sparse matrix arrays const bvalues = b._values; const bsize = b._size; const bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType(); // validate dimensions if (asize.length !== bsize.length) { throw new _DimensionError.DimensionError(asize.length, bsize.length); } // check rows & columns if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) { throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')'); } // rows & columns const rows = asize[0]; const columns = asize[1]; // datatype let dt; // equal signature to use let eq = equalScalar; // zero value let zero = 0; // callback signature to use let cf = callback; // process data types if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') { // datatype dt = adt; // find signature that matches (dt, dt) eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype zero = typed.convert(0, dt); // callback cf = typed.find(callback, [dt, dt]); } // result arrays const cvalues = avalues && bvalues ? [] : undefined; const cindex = []; const cptr = []; // workspaces const x = cvalues ? [] : undefined; // marks indicating we have a value in x for a given column const w = []; // marks indicating value in a given row has been updated const u = []; // loop columns for (let j = 0; j < columns; j++) { // update cptr cptr[j] = cindex.length; // columns mark const mark = j + 1; // scatter the values of A(:,j) into workspace (0, _collection.scatter)(a, j, w, x, u, mark, cindex, cf); // scatter the values of B(:,j) into workspace (0, _collection.scatter)(b, j, w, x, u, mark, cindex, cf); // check we need to process values (non pattern matrix) if (x) { // initialize first index in j let k = cptr[j]; // loop index in j while (k < cindex.length) { // row const i = cindex[k]; // check function was invoked on current row (Aij !=0 && Bij != 0) if (u[i] === mark) { // value @ i const v = x[i]; // check for zero value if (!eq(v, zero)) { // push value cvalues.push(v); // increment pointer k++; } else { // remove value @ i, do not increment pointer cindex.splice(k, 1); } } else { // remove value @ i, do not increment pointer cindex.splice(k, 1); } } } else { // initialize first index in j let p = cptr[j]; // loop index in j while (p < cindex.length) { // row const r = cindex[p]; // check function was invoked on current row (Aij !=0 && Bij != 0) if (u[r] !== mark) { // remove value @ i, do not increment pointer cindex.splice(p, 1); } else { // increment pointer p++; } } } } // update cptr cptr[columns] = cindex.length; // return sparse matrix return a.createSparseMatrix({ values: cvalues, index: cindex, ptr: cptr, size: [rows, columns], datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined }); }; });