mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
111 lines (102 loc) • 3.06 kB
JavaScript
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createMatAlgo12xSfs = void 0;
var _factory = require("../../../utils/factory.js");
const name = 'matAlgo12xSfs';
const dependencies = ['typed', 'DenseMatrix'];
const createMatAlgo12xSfs = exports.createMatAlgo12xSfs = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
DenseMatrix
} = _ref;
/**
* Iterates over SparseMatrix S nonzero items and invokes the callback function f(Sij, b).
* Callback function invoked MxN times.
*
*
* ┌ f(Sij, b) ; S(i,j) !== 0
* C(i,j) = ┤
* └ f(0, b) ; otherwise
*
*
* @param {Matrix} s The SparseMatrix instance (S)
* @param {Scalar} b The Scalar value
* @param {Function} callback The f(Aij,b) operation to invoke
* @param {boolean} inverse A true value indicates callback should be invoked f(b,Sij)
*
* @return {Matrix} DenseMatrix (C)
*
* https://github.com/josdejong/mathjs/pull/346#issuecomment-97626813
*/
return function matAlgo12xSfs(s, b, callback, inverse) {
// sparse matrix arrays
const avalues = s._values;
const aindex = s._index;
const aptr = s._ptr;
const asize = s._size;
const adt = s._datatype;
// sparse matrix cannot be a Pattern matrix
if (!avalues) {
throw new Error('Cannot perform operation on Pattern Sparse Matrix and Scalar value');
}
// rows & columns
const rows = asize[0];
const columns = asize[1];
// datatype
let dt;
// callback signature to use
let cf = callback;
// process data types
if (typeof adt === 'string') {
// datatype
dt = adt;
// convert b to the same datatype
b = typed.convert(b, dt);
// callback
cf = typed.find(callback, [dt, dt]);
}
// result arrays
const cdata = [];
// workspaces
const x = [];
// marks indicating we have a value in x for a given column
const w = [];
// loop columns
for (let j = 0; j < columns; j++) {
// columns mark
const mark = j + 1;
// values in j
for (let k0 = aptr[j], k1 = aptr[j + 1], k = k0; k < k1; k++) {
// row
const r = aindex[k];
// update workspace
x[r] = avalues[k];
w[r] = mark;
}
// loop rows
for (let i = 0; i < rows; i++) {
// initialize C on first column
if (j === 0) {
// create row array
cdata[i] = [];
}
// check sparse matrix has a value @ i,j
if (w[i] === mark) {
// invoke callback, update C
cdata[i][j] = inverse ? cf(b, x[i]) : cf(x[i], b);
} else {
// dense matrix value @ i, j
cdata[i][j] = inverse ? cf(b, 0) : cf(0, b);
}
}
}
// return dense matrix
return new DenseMatrix({
data: cdata,
size: [rows, columns],
datatype: dt
});
};
});
;