UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

148 lines (137 loc) 4.28 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createMatAlgo09xS0Sf = void 0; var _factory = require("../../../utils/factory.js"); var _DimensionError = require("../../../error/DimensionError.js"); const name = 'matAlgo09xS0Sf'; const dependencies = ['typed', 'equalScalar']; const createMatAlgo09xS0Sf = exports.createMatAlgo09xS0Sf = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { typed, equalScalar } = _ref; /** * Iterates over SparseMatrix A and invokes the callback function f(Aij, Bij). * Callback function invoked NZA times, number of nonzero elements in A. * * * ┌ f(Aij, Bij) ; A(i,j) !== 0 * C(i,j) = ┤ * └ 0 ; otherwise * * * @param {Matrix} a The SparseMatrix instance (A) * @param {Matrix} b The SparseMatrix instance (B) * @param {Function} callback The f(Aij,Bij) operation to invoke * * @return {Matrix} SparseMatrix (C) * * see https://github.com/josdejong/mathjs/pull/346#issuecomment-97620294 */ return function matAlgo09xS0Sf(a, b, callback) { // sparse matrix arrays const avalues = a._values; const aindex = a._index; const aptr = a._ptr; const asize = a._size; const adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType(); // sparse matrix arrays const bvalues = b._values; const bindex = b._index; const bptr = b._ptr; const bsize = b._size; const bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType(); // validate dimensions if (asize.length !== bsize.length) { throw new _DimensionError.DimensionError(asize.length, bsize.length); } // check rows & columns if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) { throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')'); } // rows & columns const rows = asize[0]; const columns = asize[1]; // datatype let dt; // equal signature to use let eq = equalScalar; // zero value let zero = 0; // callback signature to use let cf = callback; // process data types if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') { // datatype dt = adt; // find signature that matches (dt, dt) eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype zero = typed.convert(0, dt); // callback cf = typed.find(callback, [dt, dt]); } // result arrays const cvalues = avalues && bvalues ? [] : undefined; const cindex = []; const cptr = []; // workspaces const x = cvalues ? [] : undefined; // marks indicating we have a value in x for a given column const w = []; // vars let i, j, k, k0, k1; // loop columns for (j = 0; j < columns; j++) { // update cptr cptr[j] = cindex.length; // column mark const mark = j + 1; // check we need to process values if (x) { // loop B(:,j) for (k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) { // row i = bindex[k]; // update workspace w[i] = mark; x[i] = bvalues[k]; } } // loop A(:,j) for (k0 = aptr[j], k1 = aptr[j + 1], k = k0; k < k1; k++) { // row i = aindex[k]; // check we need to process values if (x) { // b value @ i,j const vb = w[i] === mark ? x[i] : zero; // invoke f const vc = cf(avalues[k], vb); // check zero value if (!eq(vc, zero)) { // push index cindex.push(i); // push value cvalues.push(vc); } } else { // push index cindex.push(i); } } } // update cptr cptr[columns] = cindex.length; // return sparse matrix return a.createSparseMatrix({ values: cvalues, index: cindex, ptr: cptr, size: [rows, columns], datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined }); }; });