mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
148 lines (137 loc) • 4.28 kB
JavaScript
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createMatAlgo09xS0Sf = void 0;
var _factory = require("../../../utils/factory.js");
var _DimensionError = require("../../../error/DimensionError.js");
const name = 'matAlgo09xS0Sf';
const dependencies = ['typed', 'equalScalar'];
const createMatAlgo09xS0Sf = exports.createMatAlgo09xS0Sf = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
equalScalar
} = _ref;
/**
* Iterates over SparseMatrix A and invokes the callback function f(Aij, Bij).
* Callback function invoked NZA times, number of nonzero elements in A.
*
*
* ┌ f(Aij, Bij) ; A(i,j) !== 0
* C(i,j) = ┤
* └ 0 ; otherwise
*
*
* @param {Matrix} a The SparseMatrix instance (A)
* @param {Matrix} b The SparseMatrix instance (B)
* @param {Function} callback The f(Aij,Bij) operation to invoke
*
* @return {Matrix} SparseMatrix (C)
*
* see https://github.com/josdejong/mathjs/pull/346#issuecomment-97620294
*/
return function matAlgo09xS0Sf(a, b, callback) {
// sparse matrix arrays
const avalues = a._values;
const aindex = a._index;
const aptr = a._ptr;
const asize = a._size;
const adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType();
// sparse matrix arrays
const bvalues = b._values;
const bindex = b._index;
const bptr = b._ptr;
const bsize = b._size;
const bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType();
// validate dimensions
if (asize.length !== bsize.length) {
throw new _DimensionError.DimensionError(asize.length, bsize.length);
}
// check rows & columns
if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) {
throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')');
}
// rows & columns
const rows = asize[0];
const columns = asize[1];
// datatype
let dt;
// equal signature to use
let eq = equalScalar;
// zero value
let zero = 0;
// callback signature to use
let cf = callback;
// process data types
if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') {
// datatype
dt = adt;
// find signature that matches (dt, dt)
eq = typed.find(equalScalar, [dt, dt]);
// convert 0 to the same datatype
zero = typed.convert(0, dt);
// callback
cf = typed.find(callback, [dt, dt]);
}
// result arrays
const cvalues = avalues && bvalues ? [] : undefined;
const cindex = [];
const cptr = [];
// workspaces
const x = cvalues ? [] : undefined;
// marks indicating we have a value in x for a given column
const w = [];
// vars
let i, j, k, k0, k1;
// loop columns
for (j = 0; j < columns; j++) {
// update cptr
cptr[j] = cindex.length;
// column mark
const mark = j + 1;
// check we need to process values
if (x) {
// loop B(:,j)
for (k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) {
// row
i = bindex[k];
// update workspace
w[i] = mark;
x[i] = bvalues[k];
}
}
// loop A(:,j)
for (k0 = aptr[j], k1 = aptr[j + 1], k = k0; k < k1; k++) {
// row
i = aindex[k];
// check we need to process values
if (x) {
// b value @ i,j
const vb = w[i] === mark ? x[i] : zero;
// invoke f
const vc = cf(avalues[k], vb);
// check zero value
if (!eq(vc, zero)) {
// push index
cindex.push(i);
// push value
cvalues.push(vc);
}
} else {
// push index
cindex.push(i);
}
}
}
// update cptr
cptr[columns] = cindex.length;
// return sparse matrix
return a.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [rows, columns],
datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined
});
};
});
;