mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
121 lines (109 loc) • 3.64 kB
JavaScript
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createMatAlgo07xSSf = void 0;
var _factory = require("../../../utils/factory.js");
var _DimensionError = require("../../../error/DimensionError.js");
const name = 'matAlgo07xSSf';
const dependencies = ['typed', 'SparseMatrix'];
const createMatAlgo07xSSf = exports.createMatAlgo07xSSf = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
SparseMatrix
} = _ref;
/**
* Iterates over SparseMatrix A and SparseMatrix B items (zero and nonzero) and invokes the callback function f(Aij, Bij).
* Callback function invoked MxN times.
*
* C(i,j) = f(Aij, Bij)
*
* @param {Matrix} a The SparseMatrix instance (A)
* @param {Matrix} b The SparseMatrix instance (B)
* @param {Function} callback The f(Aij,Bij) operation to invoke
*
* @return {Matrix} SparseMatrix (C)
*
* see https://github.com/josdejong/mathjs/pull/346#issuecomment-97620294
*/
return function matAlgo07xSSf(a, b, callback) {
// sparse matrix arrays
const asize = a._size;
const adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType();
const bsize = b._size;
const bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType();
// validate dimensions
if (asize.length !== bsize.length) {
throw new _DimensionError.DimensionError(asize.length, bsize.length);
}
if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) {
throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')');
}
// rows & columns
const rows = asize[0];
const columns = asize[1];
// datatype
let dt;
let zero = 0;
let cf = callback;
// process data types
if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') {
dt = adt;
zero = typed.convert(0, dt);
cf = typed.find(callback, [dt, dt]);
}
// result arrays for sparse format
const cvalues = [];
const cindex = [];
const cptr = new Array(columns + 1).fill(0); // Start with column pointer array
// workspaces
const xa = [];
const xb = [];
const wa = [];
const wb = [];
// loop columns
for (let j = 0; j < columns; j++) {
const mark = j + 1;
let nonZeroCount = 0;
_scatter(a, j, wa, xa, mark);
_scatter(b, j, wb, xb, mark);
// loop rows
for (let i = 0; i < rows; i++) {
const va = wa[i] === mark ? xa[i] : zero;
const vb = wb[i] === mark ? xb[i] : zero;
// invoke callback
const cij = cf(va, vb);
// Store all non zero and true values
if (cij !== 0 && cij !== false) {
cindex.push(i); // row index
cvalues.push(cij); // computed value
nonZeroCount++;
}
}
// Update column pointer with cumulative count of non-zero values
cptr[j + 1] = cptr[j] + nonZeroCount;
}
// Return the result as a sparse matrix
return new SparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [rows, columns],
datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined
});
};
function _scatter(m, j, w, x, mark) {
// a arrays
const values = m._values;
const index = m._index;
const ptr = m._ptr;
// loop values in column j
for (let k = ptr[j], k1 = ptr[j + 1]; k < k1; k++) {
// row
const i = index[k];
// update workspace
w[i] = mark;
x[i] = values[k];
}
}
});
;