UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

121 lines (109 loc) 3.64 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createMatAlgo07xSSf = void 0; var _factory = require("../../../utils/factory.js"); var _DimensionError = require("../../../error/DimensionError.js"); const name = 'matAlgo07xSSf'; const dependencies = ['typed', 'SparseMatrix']; const createMatAlgo07xSSf = exports.createMatAlgo07xSSf = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { typed, SparseMatrix } = _ref; /** * Iterates over SparseMatrix A and SparseMatrix B items (zero and nonzero) and invokes the callback function f(Aij, Bij). * Callback function invoked MxN times. * * C(i,j) = f(Aij, Bij) * * @param {Matrix} a The SparseMatrix instance (A) * @param {Matrix} b The SparseMatrix instance (B) * @param {Function} callback The f(Aij,Bij) operation to invoke * * @return {Matrix} SparseMatrix (C) * * see https://github.com/josdejong/mathjs/pull/346#issuecomment-97620294 */ return function matAlgo07xSSf(a, b, callback) { // sparse matrix arrays const asize = a._size; const adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType(); const bsize = b._size; const bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType(); // validate dimensions if (asize.length !== bsize.length) { throw new _DimensionError.DimensionError(asize.length, bsize.length); } if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) { throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')'); } // rows & columns const rows = asize[0]; const columns = asize[1]; // datatype let dt; let zero = 0; let cf = callback; // process data types if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') { dt = adt; zero = typed.convert(0, dt); cf = typed.find(callback, [dt, dt]); } // result arrays for sparse format const cvalues = []; const cindex = []; const cptr = new Array(columns + 1).fill(0); // Start with column pointer array // workspaces const xa = []; const xb = []; const wa = []; const wb = []; // loop columns for (let j = 0; j < columns; j++) { const mark = j + 1; let nonZeroCount = 0; _scatter(a, j, wa, xa, mark); _scatter(b, j, wb, xb, mark); // loop rows for (let i = 0; i < rows; i++) { const va = wa[i] === mark ? xa[i] : zero; const vb = wb[i] === mark ? xb[i] : zero; // invoke callback const cij = cf(va, vb); // Store all non zero and true values if (cij !== 0 && cij !== false) { cindex.push(i); // row index cvalues.push(cij); // computed value nonZeroCount++; } } // Update column pointer with cumulative count of non-zero values cptr[j + 1] = cptr[j] + nonZeroCount; } // Return the result as a sparse matrix return new SparseMatrix({ values: cvalues, index: cindex, ptr: cptr, size: [rows, columns], datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined }); }; function _scatter(m, j, w, x, mark) { // a arrays const values = m._values; const index = m._index; const ptr = m._ptr; // loop values in column j for (let k = ptr[j], k1 = ptr[j + 1]; k < k1; k++) { // row const i = index[k]; // update workspace w[i] = mark; x[i] = values[k]; } } });