mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
177 lines (166 loc) • 5.16 kB
JavaScript
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createMatAlgo05xSfSf = void 0;
var _factory = require("../../../utils/factory.js");
var _DimensionError = require("../../../error/DimensionError.js");
const name = 'matAlgo05xSfSf';
const dependencies = ['typed', 'equalScalar'];
const createMatAlgo05xSfSf = exports.createMatAlgo05xSfSf = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
equalScalar
} = _ref;
/**
* Iterates over SparseMatrix A and SparseMatrix B nonzero items and invokes the callback function f(Aij, Bij).
* Callback function invoked MAX(NNZA, NNZB) times
*
*
* ┌ f(Aij, Bij) ; A(i,j) !== 0 || B(i,j) !== 0
* C(i,j) = ┤
* └ 0 ; otherwise
*
*
* @param {Matrix} a The SparseMatrix instance (A)
* @param {Matrix} b The SparseMatrix instance (B)
* @param {Function} callback The f(Aij,Bij) operation to invoke
*
* @return {Matrix} SparseMatrix (C)
*
* see https://github.com/josdejong/mathjs/pull/346#issuecomment-97620294
*/
return function matAlgo05xSfSf(a, b, callback) {
// sparse matrix arrays
const avalues = a._values;
const aindex = a._index;
const aptr = a._ptr;
const asize = a._size;
const adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType();
// sparse matrix arrays
const bvalues = b._values;
const bindex = b._index;
const bptr = b._ptr;
const bsize = b._size;
const bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType();
// validate dimensions
if (asize.length !== bsize.length) {
throw new _DimensionError.DimensionError(asize.length, bsize.length);
}
// check rows & columns
if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) {
throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')');
}
// rows & columns
const rows = asize[0];
const columns = asize[1];
// datatype
let dt;
// equal signature to use
let eq = equalScalar;
// zero value
let zero = 0;
// callback signature to use
let cf = callback;
// process data types
if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') {
// datatype
dt = adt;
// find signature that matches (dt, dt)
eq = typed.find(equalScalar, [dt, dt]);
// convert 0 to the same datatype
zero = typed.convert(0, dt);
// callback
cf = typed.find(callback, [dt, dt]);
}
// result arrays
const cvalues = avalues && bvalues ? [] : undefined;
const cindex = [];
const cptr = [];
// workspaces
const xa = cvalues ? [] : undefined;
const xb = cvalues ? [] : undefined;
// marks indicating we have a value in x for a given column
const wa = [];
const wb = [];
// vars
let i, j, k, k1;
// loop columns
for (j = 0; j < columns; j++) {
// update cptr
cptr[j] = cindex.length;
// columns mark
const mark = j + 1;
// loop values A(:,j)
for (k = aptr[j], k1 = aptr[j + 1]; k < k1; k++) {
// row
i = aindex[k];
// push index
cindex.push(i);
// update workspace
wa[i] = mark;
// check we need to process values
if (xa) {
xa[i] = avalues[k];
}
}
// loop values B(:,j)
for (k = bptr[j], k1 = bptr[j + 1]; k < k1; k++) {
// row
i = bindex[k];
// check row existed in A
if (wa[i] !== mark) {
// push index
cindex.push(i);
}
// update workspace
wb[i] = mark;
// check we need to process values
if (xb) {
xb[i] = bvalues[k];
}
}
// check we need to process values (non pattern matrix)
if (cvalues) {
// initialize first index in j
k = cptr[j];
// loop index in j
while (k < cindex.length) {
// row
i = cindex[k];
// marks
const wai = wa[i];
const wbi = wb[i];
// check Aij or Bij are nonzero
if (wai === mark || wbi === mark) {
// matrix values @ i,j
const va = wai === mark ? xa[i] : zero;
const vb = wbi === mark ? xb[i] : zero;
// Cij
const vc = cf(va, vb);
// check for zero
if (!eq(vc, zero)) {
// push value
cvalues.push(vc);
// increment pointer
k++;
} else {
// remove value @ i, do not increment pointer
cindex.splice(k, 1);
}
}
}
}
}
// update cptr
cptr[columns] = cindex.length;
// return sparse matrix
return a.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [rows, columns],
datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined
});
};
});
;