mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
128 lines (116 loc) • 4.09 kB
JavaScript
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createMatAlgo03xDSf = void 0;
var _factory = require("../../../utils/factory.js");
var _DimensionError = require("../../../error/DimensionError.js");
const name = 'matAlgo03xDSf';
const dependencies = ['typed'];
const createMatAlgo03xDSf = exports.createMatAlgo03xDSf = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed
} = _ref;
/**
* Iterates over SparseMatrix items and invokes the callback function f(Dij, Sij).
* Callback function invoked M*N times.
*
*
* ┌ f(Dij, Sij) ; S(i,j) !== 0
* C(i,j) = ┤
* └ f(Dij, 0) ; otherwise
*
*
* @param {Matrix} denseMatrix The DenseMatrix instance (D)
* @param {Matrix} sparseMatrix The SparseMatrix instance (C)
* @param {Function} callback The f(Dij,Sij) operation to invoke, where Dij = DenseMatrix(i,j) and Sij = SparseMatrix(i,j)
* @param {boolean} inverse A true value indicates callback should be invoked f(Sij,Dij)
*
* @return {Matrix} DenseMatrix (C)
*
* see https://github.com/josdejong/mathjs/pull/346#issuecomment-97477571
*/
return function matAlgo03xDSf(denseMatrix, sparseMatrix, callback, inverse) {
// dense matrix arrays
const adata = denseMatrix._data;
const asize = denseMatrix._size;
const adt = denseMatrix._datatype || denseMatrix.getDataType();
// sparse matrix arrays
const bvalues = sparseMatrix._values;
const bindex = sparseMatrix._index;
const bptr = sparseMatrix._ptr;
const bsize = sparseMatrix._size;
const bdt = sparseMatrix._datatype || sparseMatrix._data === undefined ? sparseMatrix._datatype : sparseMatrix.getDataType();
// validate dimensions
if (asize.length !== bsize.length) {
throw new _DimensionError.DimensionError(asize.length, bsize.length);
}
// check rows & columns
if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) {
throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')');
}
// sparse matrix cannot be a Pattern matrix
if (!bvalues) {
throw new Error('Cannot perform operation on Dense Matrix and Pattern Sparse Matrix');
}
// rows & columns
const rows = asize[0];
const columns = asize[1];
// datatype
let dt;
// zero value
let zero = 0;
// callback signature to use
let cf = callback;
// process data types
if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') {
// datatype
dt = adt;
// convert 0 to the same datatype
zero = typed.convert(0, dt);
// callback
cf = typed.find(callback, [dt, dt]);
}
// result (DenseMatrix)
const cdata = [];
// initialize dense matrix
for (let z = 0; z < rows; z++) {
// initialize row
cdata[z] = [];
}
// workspace
const x = [];
// marks indicating we have a value in x for a given column
const w = [];
// loop columns in b
for (let j = 0; j < columns; j++) {
// column mark
const mark = j + 1;
// values in column j
for (let k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) {
// row
const i = bindex[k];
// update workspace
x[i] = inverse ? cf(bvalues[k], adata[i][j]) : cf(adata[i][j], bvalues[k]);
w[i] = mark;
}
// process workspace
for (let y = 0; y < rows; y++) {
// check we have a calculated value for current row
if (w[y] === mark) {
// use calculated value
cdata[y][j] = x[y];
} else {
// calculate value
cdata[y][j] = inverse ? cf(zero, adata[y][j]) : cf(adata[y][j], zero);
}
}
}
// return dense matrix
return denseMatrix.createDenseMatrix({
data: cdata,
size: [rows, columns],
datatype: adt === denseMatrix._datatype && bdt === sparseMatrix._datatype ? dt : undefined
});
};
});
;