UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

128 lines (116 loc) 4.09 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createMatAlgo03xDSf = void 0; var _factory = require("../../../utils/factory.js"); var _DimensionError = require("../../../error/DimensionError.js"); const name = 'matAlgo03xDSf'; const dependencies = ['typed']; const createMatAlgo03xDSf = exports.createMatAlgo03xDSf = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { typed } = _ref; /** * Iterates over SparseMatrix items and invokes the callback function f(Dij, Sij). * Callback function invoked M*N times. * * * ┌ f(Dij, Sij) ; S(i,j) !== 0 * C(i,j) = ┤ * └ f(Dij, 0) ; otherwise * * * @param {Matrix} denseMatrix The DenseMatrix instance (D) * @param {Matrix} sparseMatrix The SparseMatrix instance (C) * @param {Function} callback The f(Dij,Sij) operation to invoke, where Dij = DenseMatrix(i,j) and Sij = SparseMatrix(i,j) * @param {boolean} inverse A true value indicates callback should be invoked f(Sij,Dij) * * @return {Matrix} DenseMatrix (C) * * see https://github.com/josdejong/mathjs/pull/346#issuecomment-97477571 */ return function matAlgo03xDSf(denseMatrix, sparseMatrix, callback, inverse) { // dense matrix arrays const adata = denseMatrix._data; const asize = denseMatrix._size; const adt = denseMatrix._datatype || denseMatrix.getDataType(); // sparse matrix arrays const bvalues = sparseMatrix._values; const bindex = sparseMatrix._index; const bptr = sparseMatrix._ptr; const bsize = sparseMatrix._size; const bdt = sparseMatrix._datatype || sparseMatrix._data === undefined ? sparseMatrix._datatype : sparseMatrix.getDataType(); // validate dimensions if (asize.length !== bsize.length) { throw new _DimensionError.DimensionError(asize.length, bsize.length); } // check rows & columns if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) { throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')'); } // sparse matrix cannot be a Pattern matrix if (!bvalues) { throw new Error('Cannot perform operation on Dense Matrix and Pattern Sparse Matrix'); } // rows & columns const rows = asize[0]; const columns = asize[1]; // datatype let dt; // zero value let zero = 0; // callback signature to use let cf = callback; // process data types if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') { // datatype dt = adt; // convert 0 to the same datatype zero = typed.convert(0, dt); // callback cf = typed.find(callback, [dt, dt]); } // result (DenseMatrix) const cdata = []; // initialize dense matrix for (let z = 0; z < rows; z++) { // initialize row cdata[z] = []; } // workspace const x = []; // marks indicating we have a value in x for a given column const w = []; // loop columns in b for (let j = 0; j < columns; j++) { // column mark const mark = j + 1; // values in column j for (let k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) { // row const i = bindex[k]; // update workspace x[i] = inverse ? cf(bvalues[k], adata[i][j]) : cf(adata[i][j], bvalues[k]); w[i] = mark; } // process workspace for (let y = 0; y < rows; y++) { // check we have a calculated value for current row if (w[y] === mark) { // use calculated value cdata[y][j] = x[y]; } else { // calculate value cdata[y][j] = inverse ? cf(zero, adata[y][j]) : cf(adata[y][j], zero); } } } // return dense matrix return denseMatrix.createDenseMatrix({ data: cdata, size: [rows, columns], datatype: adt === denseMatrix._datatype && bdt === sparseMatrix._datatype ? dt : undefined }); }; });