UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

122 lines (112 loc) 4 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createMatAlgo02xDS0 = void 0; var _factory = require("../../../utils/factory.js"); var _DimensionError = require("../../../error/DimensionError.js"); const name = 'matAlgo02xDS0'; const dependencies = ['typed', 'equalScalar']; const createMatAlgo02xDS0 = exports.createMatAlgo02xDS0 = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { typed, equalScalar } = _ref; /** * Iterates over SparseMatrix nonzero items and invokes the callback function f(Dij, Sij). * Callback function invoked NNZ times (number of nonzero items in SparseMatrix). * * * ┌ f(Dij, Sij) ; S(i,j) !== 0 * C(i,j) = ┤ * └ 0 ; otherwise * * * @param {Matrix} denseMatrix The DenseMatrix instance (D) * @param {Matrix} sparseMatrix The SparseMatrix instance (S) * @param {Function} callback The f(Dij,Sij) operation to invoke, where Dij = DenseMatrix(i,j) and Sij = SparseMatrix(i,j) * @param {boolean} inverse A true value indicates callback should be invoked f(Sij,Dij) * * @return {Matrix} SparseMatrix (C) * * see https://github.com/josdejong/mathjs/pull/346#issuecomment-97477571 */ return function matAlgo02xDS0(denseMatrix, sparseMatrix, callback, inverse) { // dense matrix arrays const adata = denseMatrix._data; const asize = denseMatrix._size; const adt = denseMatrix._datatype || denseMatrix.getDataType(); // sparse matrix arrays const bvalues = sparseMatrix._values; const bindex = sparseMatrix._index; const bptr = sparseMatrix._ptr; const bsize = sparseMatrix._size; const bdt = sparseMatrix._datatype || sparseMatrix._data === undefined ? sparseMatrix._datatype : sparseMatrix.getDataType(); // validate dimensions if (asize.length !== bsize.length) { throw new _DimensionError.DimensionError(asize.length, bsize.length); } // check rows & columns if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) { throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')'); } // sparse matrix cannot be a Pattern matrix if (!bvalues) { throw new Error('Cannot perform operation on Dense Matrix and Pattern Sparse Matrix'); } // rows & columns const rows = asize[0]; const columns = asize[1]; // datatype let dt; // equal signature to use let eq = equalScalar; // zero value let zero = 0; // callback signature to use let cf = callback; // process data types if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') { // datatype dt = adt; // find signature that matches (dt, dt) eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype zero = typed.convert(0, dt); // callback cf = typed.find(callback, [dt, dt]); } // result (SparseMatrix) const cvalues = []; const cindex = []; const cptr = []; // loop columns in b for (let j = 0; j < columns; j++) { // update cptr cptr[j] = cindex.length; // values in column j for (let k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) { // row const i = bindex[k]; // update C(i,j) const cij = inverse ? cf(bvalues[k], adata[i][j]) : cf(adata[i][j], bvalues[k]); // check for nonzero if (!eq(cij, zero)) { // push i & v cindex.push(i); cvalues.push(cij); } } } // update cptr cptr[columns] = cindex.length; // return sparse matrix return sparseMatrix.createSparseMatrix({ values: cvalues, index: cindex, ptr: cptr, size: [rows, columns], datatype: adt === denseMatrix._datatype && bdt === sparseMatrix._datatype ? dt : undefined }); }; });