UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

118 lines (107 loc) 3.9 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createMatAlgo01xDSid = void 0; var _factory = require("../../../utils/factory.js"); var _DimensionError = require("../../../error/DimensionError.js"); const name = 'matAlgo01xDSid'; const dependencies = ['typed']; const createMatAlgo01xDSid = exports.createMatAlgo01xDSid = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { typed } = _ref; /** * Iterates over SparseMatrix nonzero items and invokes the callback function f(Dij, Sij). * Callback function invoked NNZ times (number of nonzero items in SparseMatrix). * * * ┌ f(Dij, Sij) ; S(i,j) !== 0 * C(i,j) = ┤ * └ Dij ; otherwise * * * @param {Matrix} denseMatrix The DenseMatrix instance (D) * @param {Matrix} sparseMatrix The SparseMatrix instance (S) * @param {Function} callback The f(Dij,Sij) operation to invoke, where Dij = DenseMatrix(i,j) and Sij = SparseMatrix(i,j) * @param {boolean} inverse A true value indicates callback should be invoked f(Sij,Dij) * * @return {Matrix} DenseMatrix (C) * * see https://github.com/josdejong/mathjs/pull/346#issuecomment-97477571 */ return function algorithm1(denseMatrix, sparseMatrix, callback, inverse) { // dense matrix arrays const adata = denseMatrix._data; const asize = denseMatrix._size; const adt = denseMatrix._datatype || denseMatrix.getDataType(); // sparse matrix arrays const bvalues = sparseMatrix._values; const bindex = sparseMatrix._index; const bptr = sparseMatrix._ptr; const bsize = sparseMatrix._size; const bdt = sparseMatrix._datatype || sparseMatrix._data === undefined ? sparseMatrix._datatype : sparseMatrix.getDataType(); // validate dimensions if (asize.length !== bsize.length) { throw new _DimensionError.DimensionError(asize.length, bsize.length); } // check rows & columns if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) { throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')'); } // sparse matrix cannot be a Pattern matrix if (!bvalues) { throw new Error('Cannot perform operation on Dense Matrix and Pattern Sparse Matrix'); } // rows & columns const rows = asize[0]; const columns = asize[1]; // process data types const dt = typeof adt === 'string' && adt !== 'mixed' && adt === bdt ? adt : undefined; // callback function const cf = dt ? typed.find(callback, [dt, dt]) : callback; // vars let i, j; // result (DenseMatrix) const cdata = []; // initialize c for (i = 0; i < rows; i++) { cdata[i] = []; } // workspace const x = []; // marks indicating we have a value in x for a given column const w = []; // loop columns in b for (j = 0; j < columns; j++) { // column mark const mark = j + 1; // values in column j for (let k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) { // row i = bindex[k]; // update workspace x[i] = inverse ? cf(bvalues[k], adata[i][j]) : cf(adata[i][j], bvalues[k]); // mark i as updated w[i] = mark; } // loop rows for (i = 0; i < rows; i++) { // check row is in workspace if (w[i] === mark) { // c[i][j] was already calculated cdata[i][j] = x[i]; } else { // item does not exist in S cdata[i][j] = adata[i][j]; } } } // return dense matrix return denseMatrix.createDenseMatrix({ data: cdata, size: [rows, columns], datatype: adt === denseMatrix._datatype && bdt === sparseMatrix._datatype ? dt : undefined }); }; });