mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
125 lines (114 loc) • 3.62 kB
JavaScript
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createMatAlgo07xSSf = void 0;
var _factory = require("../../../utils/factory.js");
var _DimensionError = require("../../../error/DimensionError.js");
const name = 'matAlgo07xSSf';
const dependencies = ['typed', 'DenseMatrix'];
const createMatAlgo07xSSf = exports.createMatAlgo07xSSf = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
DenseMatrix
} = _ref;
/**
* Iterates over SparseMatrix A and SparseMatrix B items (zero and nonzero) and invokes the callback function f(Aij, Bij).
* Callback function invoked MxN times.
*
* C(i,j) = f(Aij, Bij)
*
* @param {Matrix} a The SparseMatrix instance (A)
* @param {Matrix} b The SparseMatrix instance (B)
* @param {Function} callback The f(Aij,Bij) operation to invoke
*
* @return {Matrix} DenseMatrix (C)
*
* see https://github.com/josdejong/mathjs/pull/346#issuecomment-97620294
*/
return function matAlgo07xSSf(a, b, callback) {
// sparse matrix arrays
const asize = a._size;
const adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType();
// sparse matrix arrays
const bsize = b._size;
const bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType();
// validate dimensions
if (asize.length !== bsize.length) {
throw new _DimensionError.DimensionError(asize.length, bsize.length);
}
// check rows & columns
if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) {
throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')');
}
// rows & columns
const rows = asize[0];
const columns = asize[1];
// datatype
let dt;
// zero value
let zero = 0;
// callback signature to use
let cf = callback;
// process data types
if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') {
// datatype
dt = adt;
// convert 0 to the same datatype
zero = typed.convert(0, dt);
// callback
cf = typed.find(callback, [dt, dt]);
}
// vars
let i, j;
// result arrays
const cdata = [];
// initialize c
for (i = 0; i < rows; i++) {
cdata[i] = [];
}
// workspaces
const xa = [];
const xb = [];
// marks indicating we have a value in x for a given column
const wa = [];
const wb = [];
// loop columns
for (j = 0; j < columns; j++) {
// columns mark
const mark = j + 1;
// scatter the values of A(:,j) into workspace
_scatter(a, j, wa, xa, mark);
// scatter the values of B(:,j) into workspace
_scatter(b, j, wb, xb, mark);
// loop rows
for (i = 0; i < rows; i++) {
// matrix values @ i,j
const va = wa[i] === mark ? xa[i] : zero;
const vb = wb[i] === mark ? xb[i] : zero;
// invoke callback
cdata[i][j] = cf(va, vb);
}
}
// return dense matrix
return new DenseMatrix({
data: cdata,
size: [rows, columns],
datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined
});
};
function _scatter(m, j, w, x, mark) {
// a arrays
const values = m._values;
const index = m._index;
const ptr = m._ptr;
// loop values in column j
for (let k = ptr[j], k1 = ptr[j + 1]; k < k1; k++) {
// row
const i = index[k];
// update workspace
w[i] = mark;
x[i] = values[k];
}
}
});
;