UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

154 lines (143 loc) 4.41 kB
import { factory } from '../../../utils/factory.js'; import { DimensionError } from '../../../error/DimensionError.js'; var name = 'matAlgo08xS0Sid'; var dependencies = ['typed', 'equalScalar']; export var createMatAlgo08xS0Sid = /* #__PURE__ */factory(name, dependencies, _ref => { var { typed, equalScalar } = _ref; /** * Iterates over SparseMatrix A and SparseMatrix B nonzero items and invokes the callback function f(Aij, Bij). * Callback function invoked MAX(NNZA, NNZB) times * * * ┌ f(Aij, Bij) ; A(i,j) !== 0 && B(i,j) !== 0 * C(i,j) = ┤ A(i,j) ; A(i,j) !== 0 && B(i,j) === 0 * └ 0 ; otherwise * * * @param {Matrix} a The SparseMatrix instance (A) * @param {Matrix} b The SparseMatrix instance (B) * @param {Function} callback The f(Aij,Bij) operation to invoke * * @return {Matrix} SparseMatrix (C) * * see https://github.com/josdejong/mathjs/pull/346#issuecomment-97620294 */ return function matAlgo08xS0Sid(a, b, callback) { // sparse matrix arrays var avalues = a._values; var aindex = a._index; var aptr = a._ptr; var asize = a._size; var adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType(); // sparse matrix arrays var bvalues = b._values; var bindex = b._index; var bptr = b._ptr; var bsize = b._size; var bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType(); // validate dimensions if (asize.length !== bsize.length) { throw new DimensionError(asize.length, bsize.length); } // check rows & columns if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) { throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')'); } // sparse matrix cannot be a Pattern matrix if (!avalues || !bvalues) { throw new Error('Cannot perform operation on Pattern Sparse Matrices'); } // rows & columns var rows = asize[0]; var columns = asize[1]; // datatype var dt; // equal signature to use var eq = equalScalar; // zero value var zero = 0; // callback signature to use var cf = callback; // process data types if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') { // datatype dt = adt; // find signature that matches (dt, dt) eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype zero = typed.convert(0, dt); // callback cf = typed.find(callback, [dt, dt]); } // result arrays var cvalues = []; var cindex = []; var cptr = []; // workspace var x = []; // marks indicating we have a value in x for a given column var w = []; // vars var k, k0, k1, i; // loop columns for (var j = 0; j < columns; j++) { // update cptr cptr[j] = cindex.length; // columns mark var mark = j + 1; // loop values in a for (k0 = aptr[j], k1 = aptr[j + 1], k = k0; k < k1; k++) { // row i = aindex[k]; // mark workspace w[i] = mark; // set value x[i] = avalues[k]; // add index cindex.push(i); } // loop values in b for (k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) { // row i = bindex[k]; // check value exists in workspace if (w[i] === mark) { // evaluate callback x[i] = cf(x[i], bvalues[k]); } } // initialize first index in j k = cptr[j]; // loop index in j while (k < cindex.length) { // row i = cindex[k]; // value @ i var v = x[i]; // check for zero value if (!eq(v, zero)) { // push value cvalues.push(v); // increment pointer k++; } else { // remove value @ i, do not increment pointer cindex.splice(k, 1); } } } // update cptr cptr[columns] = cindex.length; // return sparse matrix return a.createSparseMatrix({ values: cvalues, index: cindex, ptr: cptr, size: [rows, columns], datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined }); }; });