UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

119 lines (109 loc) 3.4 kB
import { factory } from '../../../utils/factory.js'; import { DimensionError } from '../../../error/DimensionError.js'; var name = 'matAlgo07xSSf'; var dependencies = ['typed', 'DenseMatrix']; export var createMatAlgo07xSSf = /* #__PURE__ */factory(name, dependencies, _ref => { var { typed, DenseMatrix } = _ref; /** * Iterates over SparseMatrix A and SparseMatrix B items (zero and nonzero) and invokes the callback function f(Aij, Bij). * Callback function invoked MxN times. * * C(i,j) = f(Aij, Bij) * * @param {Matrix} a The SparseMatrix instance (A) * @param {Matrix} b The SparseMatrix instance (B) * @param {Function} callback The f(Aij,Bij) operation to invoke * * @return {Matrix} DenseMatrix (C) * * see https://github.com/josdejong/mathjs/pull/346#issuecomment-97620294 */ return function matAlgo07xSSf(a, b, callback) { // sparse matrix arrays var asize = a._size; var adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType(); // sparse matrix arrays var bsize = b._size; var bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType(); // validate dimensions if (asize.length !== bsize.length) { throw new DimensionError(asize.length, bsize.length); } // check rows & columns if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) { throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')'); } // rows & columns var rows = asize[0]; var columns = asize[1]; // datatype var dt; // zero value var zero = 0; // callback signature to use var cf = callback; // process data types if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') { // datatype dt = adt; // convert 0 to the same datatype zero = typed.convert(0, dt); // callback cf = typed.find(callback, [dt, dt]); } // vars var i, j; // result arrays var cdata = []; // initialize c for (i = 0; i < rows; i++) { cdata[i] = []; } // workspaces var xa = []; var xb = []; // marks indicating we have a value in x for a given column var wa = []; var wb = []; // loop columns for (j = 0; j < columns; j++) { // columns mark var mark = j + 1; // scatter the values of A(:,j) into workspace _scatter(a, j, wa, xa, mark); // scatter the values of B(:,j) into workspace _scatter(b, j, wb, xb, mark); // loop rows for (i = 0; i < rows; i++) { // matrix values @ i,j var va = wa[i] === mark ? xa[i] : zero; var vb = wb[i] === mark ? xb[i] : zero; // invoke callback cdata[i][j] = cf(va, vb); } } // return dense matrix return new DenseMatrix({ data: cdata, size: [rows, columns], datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined }); }; function _scatter(m, j, w, x, mark) { // a arrays var values = m._values; var index = m._index; var ptr = m._ptr; // loop values in column j for (var k = ptr[j], k1 = ptr[j + 1]; k < k1; k++) { // row var i = index[k]; // update workspace w[i] = mark; x[i] = values[k]; } } });