UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

179 lines (169 loc) 5.23 kB
import { factory } from '../../../utils/factory.js'; import { DimensionError } from '../../../error/DimensionError.js'; var name = 'matAlgo04xSidSid'; var dependencies = ['typed', 'equalScalar']; export var createMatAlgo04xSidSid = /* #__PURE__ */factory(name, dependencies, _ref => { var { typed, equalScalar } = _ref; /** * Iterates over SparseMatrix A and SparseMatrix B nonzero items and invokes the callback function f(Aij, Bij). * Callback function invoked MAX(NNZA, NNZB) times * * * ┌ f(Aij, Bij) ; A(i,j) !== 0 && B(i,j) !== 0 * C(i,j) = ┤ A(i,j) ; A(i,j) !== 0 && B(i,j) === 0 * └ B(i,j) ; A(i,j) === 0 * * * @param {Matrix} a The SparseMatrix instance (A) * @param {Matrix} b The SparseMatrix instance (B) * @param {Function} callback The f(Aij,Bij) operation to invoke * * @return {Matrix} SparseMatrix (C) * * see https://github.com/josdejong/mathjs/pull/346#issuecomment-97620294 */ return function matAlgo04xSidSid(a, b, callback) { // sparse matrix arrays var avalues = a._values; var aindex = a._index; var aptr = a._ptr; var asize = a._size; var adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType(); // sparse matrix arrays var bvalues = b._values; var bindex = b._index; var bptr = b._ptr; var bsize = b._size; var bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType(); // validate dimensions if (asize.length !== bsize.length) { throw new DimensionError(asize.length, bsize.length); } // check rows & columns if (asize[0] !== bsize[0] || asize[1] !== bsize[1]) { throw new RangeError('Dimension mismatch. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')'); } // rows & columns var rows = asize[0]; var columns = asize[1]; // datatype var dt; // equal signature to use var eq = equalScalar; // zero value var zero = 0; // callback signature to use var cf = callback; // process data types if (typeof adt === 'string' && adt === bdt && adt !== 'mixed') { // datatype dt = adt; // find signature that matches (dt, dt) eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype zero = typed.convert(0, dt); // callback cf = typed.find(callback, [dt, dt]); } // result arrays var cvalues = avalues && bvalues ? [] : undefined; var cindex = []; var cptr = []; // workspace var xa = avalues && bvalues ? [] : undefined; var xb = avalues && bvalues ? [] : undefined; // marks indicating we have a value in x for a given column var wa = []; var wb = []; // vars var i, j, k, k0, k1; // loop columns for (j = 0; j < columns; j++) { // update cptr cptr[j] = cindex.length; // columns mark var mark = j + 1; // loop A(:,j) for (k0 = aptr[j], k1 = aptr[j + 1], k = k0; k < k1; k++) { // row i = aindex[k]; // update c cindex.push(i); // update workspace wa[i] = mark; // check we need to process values if (xa) { xa[i] = avalues[k]; } } // loop B(:,j) for (k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) { // row i = bindex[k]; // check row exists in A if (wa[i] === mark) { // update record in xa @ i if (xa) { // invoke callback var v = cf(xa[i], bvalues[k]); // check for zero if (!eq(v, zero)) { // update workspace xa[i] = v; } else { // remove mark (index will be removed later) wa[i] = null; } } } else { // update c cindex.push(i); // update workspace wb[i] = mark; // check we need to process values if (xb) { xb[i] = bvalues[k]; } } } // check we need to process values (non pattern matrix) if (xa && xb) { // initialize first index in j k = cptr[j]; // loop index in j while (k < cindex.length) { // row i = cindex[k]; // check workspace has value @ i if (wa[i] === mark) { // push value (Aij != 0 || (Aij != 0 && Bij != 0)) cvalues[k] = xa[i]; // increment pointer k++; } else if (wb[i] === mark) { // push value (bij != 0) cvalues[k] = xb[i]; // increment pointer k++; } else { // remove index @ k cindex.splice(k, 1); } } } } // update cptr cptr[columns] = cindex.length; // return sparse matrix return a.createSparseMatrix({ values: cvalues, index: cindex, ptr: cptr, size: [rows, columns], datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined }); }; });