mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
152 lines (149 loc) • 5.19 kB
JavaScript
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createFft = void 0;
var _toConsumableArray2 = _interopRequireDefault(require("@babel/runtime/helpers/toConsumableArray"));
var _array = require("../../utils/array.js");
var _factory = require("../../utils/factory.js");
var name = 'fft';
var dependencies = ['typed', 'matrix', 'addScalar', 'multiplyScalar', 'divideScalar', 'exp', 'tau', 'i', 'dotDivide', 'conj', 'pow', 'ceil', 'log2'];
var createFft = exports.createFft = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
matrix = _ref.matrix,
addScalar = _ref.addScalar,
multiplyScalar = _ref.multiplyScalar,
divideScalar = _ref.divideScalar,
exp = _ref.exp,
tau = _ref.tau,
I = _ref.i,
dotDivide = _ref.dotDivide,
conj = _ref.conj,
pow = _ref.pow,
ceil = _ref.ceil,
log2 = _ref.log2;
/**
* Calculate N-dimensional fourier transform
*
* Syntax:
*
* math.fft(arr)
*
* Examples:
*
* math.fft([[1, 0], [1, 0]]) // returns [[{re:2, im:0}, {re:2, im:0}], [{re:0, im:0}, {re:0, im:0}]]
*
*
* See Also:
*
* ifft
*
* @param {Array | Matrix} arr An array or matrix
* @return {Array | Matrix} N-dimensional fourier transformation of the array
*/
return typed(name, {
Array: _ndFft,
Matrix: function Matrix(matrix) {
return matrix.create(_ndFft(matrix.toArray()));
}
});
/**
* Perform an N-dimensional Fourier transform
*
* @param {Array} arr The array
* @return {Array} resulting array
*/
function _ndFft(arr) {
var size = (0, _array.arraySize)(arr);
if (size.length === 1) return _fft(arr, size[0]);
// ndFft along dimension 1,...,N-1 then 1dFft along dimension 0
return _1dFft(arr.map(function (slice) {
return _ndFft(slice, size.slice(1));
}), 0);
}
/**
* Perform an 1-dimensional Fourier transform
*
* @param {Array} arr The array
* @param {number} dim dimension of the array to perform on
* @return {Array} resulting array
*/
function _1dFft(arr, dim) {
var size = (0, _array.arraySize)(arr);
if (dim !== 0) return new Array(size[0]).fill(0).map(function (_, i) {
return _1dFft(arr[i], dim - 1);
});
if (size.length === 1) return _fft(arr);
function _transpose(arr) {
// Swap first 2 dimensions
var size = (0, _array.arraySize)(arr);
return new Array(size[1]).fill(0).map(function (_, j) {
return new Array(size[0]).fill(0).map(function (_, i) {
return arr[i][j];
});
});
}
return _transpose(_1dFft(_transpose(arr), 1));
}
/**
* Perform an 1-dimensional non-power-of-2 Fourier transform using Chirp-Z Transform
*
* @param {Array} arr The array
* @return {Array} resulting array
*/
function _czt(arr) {
var n = arr.length;
var w = exp(divideScalar(multiplyScalar(-1, multiplyScalar(I, tau)), n));
var chirp = [];
for (var i = 1 - n; i < n; i++) {
chirp.push(pow(w, divideScalar(pow(i, 2), 2)));
}
var N2 = pow(2, ceil(log2(n + n - 1)));
var xp = [].concat((0, _toConsumableArray2["default"])(new Array(n).fill(0).map(function (_, i) {
return multiplyScalar(arr[i], chirp[n - 1 + i]);
})), (0, _toConsumableArray2["default"])(new Array(N2 - n).fill(0)));
var ichirp = [].concat((0, _toConsumableArray2["default"])(new Array(n + n - 1).fill(0).map(function (_, i) {
return divideScalar(1, chirp[i]);
})), (0, _toConsumableArray2["default"])(new Array(N2 - (n + n - 1)).fill(0)));
var fftXp = _fft(xp);
var fftIchirp = _fft(ichirp);
var fftProduct = new Array(N2).fill(0).map(function (_, i) {
return multiplyScalar(fftXp[i], fftIchirp[i]);
});
var ifftProduct = dotDivide(conj(_ndFft(conj(fftProduct))), N2);
var ret = [];
for (var _i = n - 1; _i < n + n - 1; _i++) {
ret.push(multiplyScalar(ifftProduct[_i], chirp[_i]));
}
return ret;
}
/**
* Perform an 1-dimensional Fourier transform
*
* @param {Array} arr The array
* @return {Array} resulting array
*/
function _fft(arr) {
var len = arr.length;
if (len === 1) return [arr[0]];
if (len % 2 === 0) {
var ret = [].concat((0, _toConsumableArray2["default"])(_fft(arr.filter(function (_, i) {
return i % 2 === 0;
}), len / 2)), (0, _toConsumableArray2["default"])(_fft(arr.filter(function (_, i) {
return i % 2 === 1;
}), len / 2)));
for (var k = 0; k < len / 2; k++) {
var p = ret[k];
var q = multiplyScalar(ret[k + len / 2], exp(multiplyScalar(multiplyScalar(tau, I), divideScalar(-k, len))));
ret[k] = addScalar(p, q);
ret[k + len / 2] = addScalar(p, multiplyScalar(-1, q));
}
return ret;
} else {
// use chirp-z transform for non-power-of-2 FFT
return _czt(arr);
}
// throw new Error('Can only calculate FFT of power-of-two size')
}
});
;