UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

126 lines (124 loc) 4.4 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createRightArithShift = void 0; var _bitwise = require("../../utils/bignumber/bitwise.js"); var _matAlgo02xDS = require("../../type/matrix/utils/matAlgo02xDS0.js"); var _matAlgo11xS0s = require("../../type/matrix/utils/matAlgo11xS0s.js"); var _matAlgo14xDs = require("../../type/matrix/utils/matAlgo14xDs.js"); var _matAlgo01xDSid = require("../../type/matrix/utils/matAlgo01xDSid.js"); var _matAlgo10xSids = require("../../type/matrix/utils/matAlgo10xSids.js"); var _matAlgo08xS0Sid = require("../../type/matrix/utils/matAlgo08xS0Sid.js"); var _factory = require("../../utils/factory.js"); var _matrixAlgorithmSuite = require("../../type/matrix/utils/matrixAlgorithmSuite.js"); var _useMatrixForArrayScalar = require("./useMatrixForArrayScalar.js"); var _index = require("../../plain/number/index.js"); var name = 'rightArithShift'; var dependencies = ['typed', 'matrix', 'equalScalar', 'zeros', 'DenseMatrix', 'concat']; var createRightArithShift = exports.createRightArithShift = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) { var typed = _ref.typed, matrix = _ref.matrix, equalScalar = _ref.equalScalar, zeros = _ref.zeros, DenseMatrix = _ref.DenseMatrix, concat = _ref.concat; var matAlgo01xDSid = (0, _matAlgo01xDSid.createMatAlgo01xDSid)({ typed: typed }); var matAlgo02xDS0 = (0, _matAlgo02xDS.createMatAlgo02xDS0)({ typed: typed, equalScalar: equalScalar }); var matAlgo08xS0Sid = (0, _matAlgo08xS0Sid.createMatAlgo08xS0Sid)({ typed: typed, equalScalar: equalScalar }); var matAlgo10xSids = (0, _matAlgo10xSids.createMatAlgo10xSids)({ typed: typed, DenseMatrix: DenseMatrix }); var matAlgo11xS0s = (0, _matAlgo11xS0s.createMatAlgo11xS0s)({ typed: typed, equalScalar: equalScalar }); var matAlgo14xDs = (0, _matAlgo14xDs.createMatAlgo14xDs)({ typed: typed }); var matrixAlgorithmSuite = (0, _matrixAlgorithmSuite.createMatrixAlgorithmSuite)({ typed: typed, matrix: matrix, concat: concat }); var useMatrixForArrayScalar = (0, _useMatrixForArrayScalar.createUseMatrixForArrayScalar)({ typed: typed, matrix: matrix }); /** * Bitwise right arithmetic shift of a value x by y number of bits, `x >> y`. * For matrices, the function is evaluated element wise. * For units, the function is evaluated on the best prefix base. * * Syntax: * * math.rightArithShift(x, y) * * Examples: * * math.rightArithShift(4, 2) // returns number 1 * * math.rightArithShift([16, -32, 64], 4) // returns Array [1, -2, 4] * * See also: * * bitAnd, bitNot, bitOr, bitXor, rightArithShift, rightLogShift * * @param {number | BigNumber | Array | Matrix} x Value to be shifted * @param {number | BigNumber} y Amount of shifts * @return {number | BigNumber | Array | Matrix} `x` zero-filled shifted right `y` times */ return typed(name, { 'number, number': _index.rightArithShiftNumber, 'BigNumber, BigNumber': _bitwise.rightArithShiftBigNumber, 'SparseMatrix, number | BigNumber': typed.referToSelf(function (self) { return function (x, y) { // check scalar if (equalScalar(y, 0)) { return x.clone(); } return matAlgo11xS0s(x, y, self, false); }; }), 'DenseMatrix, number | BigNumber': typed.referToSelf(function (self) { return function (x, y) { // check scalar if (equalScalar(y, 0)) { return x.clone(); } return matAlgo14xDs(x, y, self, false); }; }), 'number | BigNumber, SparseMatrix': typed.referToSelf(function (self) { return function (x, y) { // check scalar if (equalScalar(x, 0)) { return zeros(y.size(), y.storage()); } return matAlgo10xSids(y, x, self, true); }; }), 'number | BigNumber, DenseMatrix': typed.referToSelf(function (self) { return function (x, y) { // check scalar if (equalScalar(x, 0)) { return zeros(y.size(), y.storage()); } return matAlgo14xDs(y, x, self, true); }; }) }, useMatrixForArrayScalar, matrixAlgorithmSuite({ SS: matAlgo08xS0Sid, DS: matAlgo01xDSid, SD: matAlgo02xDS0 })); });