UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

192 lines (188 loc) 6.15 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createNthRootNumber = exports.createNthRoot = void 0; var _factory = require("../../utils/factory.js"); var _matAlgo01xDSid = require("../../type/matrix/utils/matAlgo01xDSid.js"); var _matAlgo02xDS = require("../../type/matrix/utils/matAlgo02xDS0.js"); var _matAlgo06xS0S = require("../../type/matrix/utils/matAlgo06xS0S0.js"); var _matAlgo11xS0s = require("../../type/matrix/utils/matAlgo11xS0s.js"); var _matrixAlgorithmSuite = require("../../type/matrix/utils/matrixAlgorithmSuite.js"); var _index = require("../../plain/number/index.js"); var name = 'nthRoot'; var dependencies = ['typed', 'matrix', 'equalScalar', 'BigNumber', 'concat']; var createNthRoot = exports.createNthRoot = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) { var typed = _ref.typed, matrix = _ref.matrix, equalScalar = _ref.equalScalar, _BigNumber = _ref.BigNumber, concat = _ref.concat; var matAlgo01xDSid = (0, _matAlgo01xDSid.createMatAlgo01xDSid)({ typed: typed }); var matAlgo02xDS0 = (0, _matAlgo02xDS.createMatAlgo02xDS0)({ typed: typed, equalScalar: equalScalar }); var matAlgo06xS0S0 = (0, _matAlgo06xS0S.createMatAlgo06xS0S0)({ typed: typed, equalScalar: equalScalar }); var matAlgo11xS0s = (0, _matAlgo11xS0s.createMatAlgo11xS0s)({ typed: typed, equalScalar: equalScalar }); var matrixAlgorithmSuite = (0, _matrixAlgorithmSuite.createMatrixAlgorithmSuite)({ typed: typed, matrix: matrix, concat: concat }); /** * Calculate the nth root of a value. * The principal nth root of a positive real number A, is the positive real * solution of the equation * * x^root = A * * For matrices, the function is evaluated element wise. * * Syntax: * * math.nthRoot(a) * math.nthRoot(a, root) * * Examples: * * math.nthRoot(9, 2) // returns 3 (since 3^2 == 9) * math.sqrt(9) // returns 3 (since 3^2 == 9) * math.nthRoot(64, 3) // returns 4 (since 4^3 == 64) * * See also: * * sqrt, pow * * @param {number | BigNumber | Array | Matrix | Complex} a * Value for which to calculate the nth root * @param {number | BigNumber} [root=2] The root. * @return {number | Complex | Array | Matrix} Returns the nth root of `a` */ function complexErr() { throw new Error('Complex number not supported in function nthRoot. Use nthRoots instead.'); } return typed(name, { number: _index.nthRootNumber, 'number, number': _index.nthRootNumber, BigNumber: function BigNumber(x) { return _bigNthRoot(x, new _BigNumber(2)); }, 'BigNumber, BigNumber': _bigNthRoot, Complex: complexErr, 'Complex, number': complexErr, Array: typed.referTo('DenseMatrix,number', function (selfDn) { return function (x) { return selfDn(matrix(x), 2).valueOf(); }; }), DenseMatrix: typed.referTo('DenseMatrix,number', function (selfDn) { return function (x) { return selfDn(x, 2); }; }), SparseMatrix: typed.referTo('SparseMatrix,number', function (selfSn) { return function (x) { return selfSn(x, 2); }; }), 'SparseMatrix, SparseMatrix': typed.referToSelf(function (self) { return function (x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // sparse + sparse return matAlgo06xS0S0(x, y, self); } else { // throw exception throw new Error('Root must be non-zero'); } }; }), 'DenseMatrix, SparseMatrix': typed.referToSelf(function (self) { return function (x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // dense + sparse return matAlgo01xDSid(x, y, self, false); } else { // throw exception throw new Error('Root must be non-zero'); } }; }), 'Array, SparseMatrix': typed.referTo('DenseMatrix,SparseMatrix', function (selfDS) { return function (x, y) { return selfDS(matrix(x), y); }; }), 'number | BigNumber, SparseMatrix': typed.referToSelf(function (self) { return function (x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // sparse - scalar return matAlgo11xS0s(y, x, self, true); } else { // throw exception throw new Error('Root must be non-zero'); } }; }) }, matrixAlgorithmSuite({ scalar: 'number | BigNumber', SD: matAlgo02xDS0, Ss: matAlgo11xS0s, sS: false })); /** * Calculate the nth root of a for BigNumbers, solve x^root == a * https://rosettacode.org/wiki/Nth_root#JavaScript * @param {BigNumber} a * @param {BigNumber} root * @private */ function _bigNthRoot(a, root) { var precision = _BigNumber.precision; var Big = _BigNumber.clone({ precision: precision + 2 }); var zero = new _BigNumber(0); var one = new Big(1); var inv = root.isNegative(); if (inv) { root = root.neg(); } if (root.isZero()) { throw new Error('Root must be non-zero'); } if (a.isNegative() && !root.abs().mod(2).equals(1)) { throw new Error('Root must be odd when a is negative.'); } // edge cases zero and infinity if (a.isZero()) { return inv ? new Big(Infinity) : 0; } if (!a.isFinite()) { return inv ? zero : a; } var x = a.abs().pow(one.div(root)); // If a < 0, we require that root is an odd integer, // so (-1) ^ (1/root) = -1 x = a.isNeg() ? x.neg() : x; return new _BigNumber((inv ? one.div(x) : x).toPrecision(precision)); } }); var createNthRootNumber = exports.createNthRootNumber = /* #__PURE__ */(0, _factory.factory)(name, ['typed'], function (_ref2) { var typed = _ref2.typed; return typed(name, { number: _index.nthRootNumber, 'number, number': _index.nthRootNumber }); });