mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
192 lines (188 loc) • 6.15 kB
JavaScript
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createNthRootNumber = exports.createNthRoot = void 0;
var _factory = require("../../utils/factory.js");
var _matAlgo01xDSid = require("../../type/matrix/utils/matAlgo01xDSid.js");
var _matAlgo02xDS = require("../../type/matrix/utils/matAlgo02xDS0.js");
var _matAlgo06xS0S = require("../../type/matrix/utils/matAlgo06xS0S0.js");
var _matAlgo11xS0s = require("../../type/matrix/utils/matAlgo11xS0s.js");
var _matrixAlgorithmSuite = require("../../type/matrix/utils/matrixAlgorithmSuite.js");
var _index = require("../../plain/number/index.js");
var name = 'nthRoot';
var dependencies = ['typed', 'matrix', 'equalScalar', 'BigNumber', 'concat'];
var createNthRoot = exports.createNthRoot = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
matrix = _ref.matrix,
equalScalar = _ref.equalScalar,
_BigNumber = _ref.BigNumber,
concat = _ref.concat;
var matAlgo01xDSid = (0, _matAlgo01xDSid.createMatAlgo01xDSid)({
typed: typed
});
var matAlgo02xDS0 = (0, _matAlgo02xDS.createMatAlgo02xDS0)({
typed: typed,
equalScalar: equalScalar
});
var matAlgo06xS0S0 = (0, _matAlgo06xS0S.createMatAlgo06xS0S0)({
typed: typed,
equalScalar: equalScalar
});
var matAlgo11xS0s = (0, _matAlgo11xS0s.createMatAlgo11xS0s)({
typed: typed,
equalScalar: equalScalar
});
var matrixAlgorithmSuite = (0, _matrixAlgorithmSuite.createMatrixAlgorithmSuite)({
typed: typed,
matrix: matrix,
concat: concat
});
/**
* Calculate the nth root of a value.
* The principal nth root of a positive real number A, is the positive real
* solution of the equation
*
* x^root = A
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.nthRoot(a)
* math.nthRoot(a, root)
*
* Examples:
*
* math.nthRoot(9, 2) // returns 3 (since 3^2 == 9)
* math.sqrt(9) // returns 3 (since 3^2 == 9)
* math.nthRoot(64, 3) // returns 4 (since 4^3 == 64)
*
* See also:
*
* sqrt, pow
*
* @param {number | BigNumber | Array | Matrix | Complex} a
* Value for which to calculate the nth root
* @param {number | BigNumber} [root=2] The root.
* @return {number | Complex | Array | Matrix} Returns the nth root of `a`
*/
function complexErr() {
throw new Error('Complex number not supported in function nthRoot. Use nthRoots instead.');
}
return typed(name, {
number: _index.nthRootNumber,
'number, number': _index.nthRootNumber,
BigNumber: function BigNumber(x) {
return _bigNthRoot(x, new _BigNumber(2));
},
'BigNumber, BigNumber': _bigNthRoot,
Complex: complexErr,
'Complex, number': complexErr,
Array: typed.referTo('DenseMatrix,number', function (selfDn) {
return function (x) {
return selfDn(matrix(x), 2).valueOf();
};
}),
DenseMatrix: typed.referTo('DenseMatrix,number', function (selfDn) {
return function (x) {
return selfDn(x, 2);
};
}),
SparseMatrix: typed.referTo('SparseMatrix,number', function (selfSn) {
return function (x) {
return selfSn(x, 2);
};
}),
'SparseMatrix, SparseMatrix': typed.referToSelf(function (self) {
return function (x, y) {
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// sparse + sparse
return matAlgo06xS0S0(x, y, self);
} else {
// throw exception
throw new Error('Root must be non-zero');
}
};
}),
'DenseMatrix, SparseMatrix': typed.referToSelf(function (self) {
return function (x, y) {
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// dense + sparse
return matAlgo01xDSid(x, y, self, false);
} else {
// throw exception
throw new Error('Root must be non-zero');
}
};
}),
'Array, SparseMatrix': typed.referTo('DenseMatrix,SparseMatrix', function (selfDS) {
return function (x, y) {
return selfDS(matrix(x), y);
};
}),
'number | BigNumber, SparseMatrix': typed.referToSelf(function (self) {
return function (x, y) {
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// sparse - scalar
return matAlgo11xS0s(y, x, self, true);
} else {
// throw exception
throw new Error('Root must be non-zero');
}
};
})
}, matrixAlgorithmSuite({
scalar: 'number | BigNumber',
SD: matAlgo02xDS0,
Ss: matAlgo11xS0s,
sS: false
}));
/**
* Calculate the nth root of a for BigNumbers, solve x^root == a
* https://rosettacode.org/wiki/Nth_root#JavaScript
* @param {BigNumber} a
* @param {BigNumber} root
* @private
*/
function _bigNthRoot(a, root) {
var precision = _BigNumber.precision;
var Big = _BigNumber.clone({
precision: precision + 2
});
var zero = new _BigNumber(0);
var one = new Big(1);
var inv = root.isNegative();
if (inv) {
root = root.neg();
}
if (root.isZero()) {
throw new Error('Root must be non-zero');
}
if (a.isNegative() && !root.abs().mod(2).equals(1)) {
throw new Error('Root must be odd when a is negative.');
}
// edge cases zero and infinity
if (a.isZero()) {
return inv ? new Big(Infinity) : 0;
}
if (!a.isFinite()) {
return inv ? zero : a;
}
var x = a.abs().pow(one.div(root));
// If a < 0, we require that root is an odd integer,
// so (-1) ^ (1/root) = -1
x = a.isNeg() ? x.neg() : x;
return new _BigNumber((inv ? one.div(x) : x).toPrecision(precision));
}
});
var createNthRootNumber = exports.createNthRootNumber = /* #__PURE__ */(0, _factory.factory)(name, ['typed'], function (_ref2) {
var typed = _ref2.typed;
return typed(name, {
number: _index.nthRootNumber,
'number, number': _index.nthRootNumber
});
});
;