mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
185 lines (184 loc) • 6.8 kB
JavaScript
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createCeilNumber = exports.createCeil = void 0;
var _slicedToArray2 = _interopRequireDefault(require("@babel/runtime/helpers/slicedToArray"));
var _decimal = _interopRequireDefault(require("decimal.js"));
var _factory = require("../../utils/factory.js");
var _collection = require("../../utils/collection.js");
var _number = require("../../utils/number.js");
var _nearlyEqual = require("../../utils/bignumber/nearlyEqual.js");
var _matAlgo11xS0s = require("../../type/matrix/utils/matAlgo11xS0s.js");
var _matAlgo12xSfs = require("../../type/matrix/utils/matAlgo12xSfs.js");
var _matAlgo14xDs = require("../../type/matrix/utils/matAlgo14xDs.js");
var name = 'ceil';
var dependencies = ['typed', 'config', 'round', 'matrix', 'equalScalar', 'zeros', 'DenseMatrix'];
var createCeilNumber = exports.createCeilNumber = /* #__PURE__ */(0, _factory.factory)(name, ['typed', 'config', 'round'], function (_ref) {
var typed = _ref.typed,
config = _ref.config,
round = _ref.round;
return typed(name, {
number: function number(x) {
if ((0, _number.nearlyEqual)(x, round(x), config.epsilon)) {
return round(x);
} else {
return Math.ceil(x);
}
},
'number, number': function numberNumber(x, n) {
if ((0, _number.nearlyEqual)(x, round(x, n), config.epsilon)) {
return round(x, n);
} else {
var _split = "".concat(x, "e").split('e'),
_split2 = (0, _slicedToArray2["default"])(_split, 2),
number = _split2[0],
exponent = _split2[1];
var result = Math.ceil(Number("".concat(number, "e").concat(Number(exponent) + n)));
var _split3 = "".concat(result, "e").split('e');
var _split4 = (0, _slicedToArray2["default"])(_split3, 2);
number = _split4[0];
exponent = _split4[1];
return Number("".concat(number, "e").concat(Number(exponent) - n));
}
}
});
});
var createCeil = exports.createCeil = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref2) {
var typed = _ref2.typed,
config = _ref2.config,
round = _ref2.round,
matrix = _ref2.matrix,
equalScalar = _ref2.equalScalar,
zeros = _ref2.zeros,
DenseMatrix = _ref2.DenseMatrix;
var matAlgo11xS0s = (0, _matAlgo11xS0s.createMatAlgo11xS0s)({
typed: typed,
equalScalar: equalScalar
});
var matAlgo12xSfs = (0, _matAlgo12xSfs.createMatAlgo12xSfs)({
typed: typed,
DenseMatrix: DenseMatrix
});
var matAlgo14xDs = (0, _matAlgo14xDs.createMatAlgo14xDs)({
typed: typed
});
var ceilNumber = createCeilNumber({
typed: typed,
config: config,
round: round
});
/**
* Round a value towards plus infinity
* If `x` is complex, both real and imaginary part are rounded towards plus infinity.
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.ceil(x)
* math.ceil(x, n)
*
* Examples:
*
* math.ceil(3.2) // returns number 4
* math.ceil(3.8) // returns number 4
* math.ceil(-4.2) // returns number -4
* math.ceil(-4.7) // returns number -4
*
* math.ceil(3.212, 2) // returns number 3.22
* math.ceil(3.288, 2) // returns number 3.29
* math.ceil(-4.212, 2) // returns number -4.21
* math.ceil(-4.782, 2) // returns number -4.78
*
* const c = math.complex(3.24, -2.71)
* math.ceil(c) // returns Complex 4 - 2i
* math.ceil(c, 1) // returns Complex 3.3 - 2.7i
*
* math.ceil([3.2, 3.8, -4.7]) // returns Array [4, 4, -4]
* math.ceil([3.21, 3.82, -4.71], 1) // returns Array [3.3, 3.9, -4.7]
*
* See also:
*
* floor, fix, round
*
* @param {number | BigNumber | Fraction | Complex | Array | Matrix} x Number to be rounded
* @param {number | BigNumber | Array} [n=0] Number of decimals
* @return {number | BigNumber | Fraction | Complex | Array | Matrix} Rounded value
*/
return typed('ceil', {
number: ceilNumber.signatures.number,
'number,number': ceilNumber.signatures['number,number'],
Complex: function Complex(x) {
return x.ceil();
},
'Complex, number': function ComplexNumber(x, n) {
return x.ceil(n);
},
'Complex, BigNumber': function ComplexBigNumber(x, n) {
return x.ceil(n.toNumber());
},
BigNumber: function BigNumber(x) {
if ((0, _nearlyEqual.nearlyEqual)(x, round(x), config.epsilon)) {
return round(x);
} else {
return x.ceil();
}
},
'BigNumber, BigNumber': function BigNumberBigNumber(x, n) {
if ((0, _nearlyEqual.nearlyEqual)(x, round(x, n), config.epsilon)) {
return round(x, n);
} else {
return x.toDecimalPlaces(n.toNumber(), _decimal["default"].ROUND_CEIL);
}
},
Fraction: function Fraction(x) {
return x.ceil();
},
'Fraction, number': function FractionNumber(x, n) {
return x.ceil(n);
},
'Fraction, BigNumber': function FractionBigNumber(x, n) {
return x.ceil(n.toNumber());
},
'Array | Matrix': typed.referToSelf(function (self) {
return function (x) {
// deep map collection, skip zeros since ceil(0) = 0
return (0, _collection.deepMap)(x, self, true);
};
}),
'Array, number | BigNumber': typed.referToSelf(function (self) {
return function (x, n) {
// deep map collection, skip zeros since ceil(0) = 0
return (0, _collection.deepMap)(x, function (i) {
return self(i, n);
}, true);
};
}),
'SparseMatrix, number | BigNumber': typed.referToSelf(function (self) {
return function (x, y) {
return matAlgo11xS0s(x, y, self, false);
};
}),
'DenseMatrix, number | BigNumber': typed.referToSelf(function (self) {
return function (x, y) {
return matAlgo14xDs(x, y, self, false);
};
}),
'number | Complex | Fraction | BigNumber, Array': typed.referToSelf(function (self) {
return function (x, y) {
// use matrix implementation
return matAlgo14xDs(matrix(y), x, self, true).valueOf();
};
}),
'number | Complex | Fraction | BigNumber, Matrix': typed.referToSelf(function (self) {
return function (x, y) {
if (equalScalar(x, 0)) return zeros(y.size(), y.storage());
if (y.storage() === 'dense') {
return matAlgo14xDs(y, x, self, true);
}
return matAlgo12xSfs(y, x, self, true);
};
})
});
});
;