UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

185 lines (184 loc) 6.8 kB
"use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports.createCeilNumber = exports.createCeil = void 0; var _slicedToArray2 = _interopRequireDefault(require("@babel/runtime/helpers/slicedToArray")); var _decimal = _interopRequireDefault(require("decimal.js")); var _factory = require("../../utils/factory.js"); var _collection = require("../../utils/collection.js"); var _number = require("../../utils/number.js"); var _nearlyEqual = require("../../utils/bignumber/nearlyEqual.js"); var _matAlgo11xS0s = require("../../type/matrix/utils/matAlgo11xS0s.js"); var _matAlgo12xSfs = require("../../type/matrix/utils/matAlgo12xSfs.js"); var _matAlgo14xDs = require("../../type/matrix/utils/matAlgo14xDs.js"); var name = 'ceil'; var dependencies = ['typed', 'config', 'round', 'matrix', 'equalScalar', 'zeros', 'DenseMatrix']; var createCeilNumber = exports.createCeilNumber = /* #__PURE__ */(0, _factory.factory)(name, ['typed', 'config', 'round'], function (_ref) { var typed = _ref.typed, config = _ref.config, round = _ref.round; return typed(name, { number: function number(x) { if ((0, _number.nearlyEqual)(x, round(x), config.epsilon)) { return round(x); } else { return Math.ceil(x); } }, 'number, number': function numberNumber(x, n) { if ((0, _number.nearlyEqual)(x, round(x, n), config.epsilon)) { return round(x, n); } else { var _split = "".concat(x, "e").split('e'), _split2 = (0, _slicedToArray2["default"])(_split, 2), number = _split2[0], exponent = _split2[1]; var result = Math.ceil(Number("".concat(number, "e").concat(Number(exponent) + n))); var _split3 = "".concat(result, "e").split('e'); var _split4 = (0, _slicedToArray2["default"])(_split3, 2); number = _split4[0]; exponent = _split4[1]; return Number("".concat(number, "e").concat(Number(exponent) - n)); } } }); }); var createCeil = exports.createCeil = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref2) { var typed = _ref2.typed, config = _ref2.config, round = _ref2.round, matrix = _ref2.matrix, equalScalar = _ref2.equalScalar, zeros = _ref2.zeros, DenseMatrix = _ref2.DenseMatrix; var matAlgo11xS0s = (0, _matAlgo11xS0s.createMatAlgo11xS0s)({ typed: typed, equalScalar: equalScalar }); var matAlgo12xSfs = (0, _matAlgo12xSfs.createMatAlgo12xSfs)({ typed: typed, DenseMatrix: DenseMatrix }); var matAlgo14xDs = (0, _matAlgo14xDs.createMatAlgo14xDs)({ typed: typed }); var ceilNumber = createCeilNumber({ typed: typed, config: config, round: round }); /** * Round a value towards plus infinity * If `x` is complex, both real and imaginary part are rounded towards plus infinity. * For matrices, the function is evaluated element wise. * * Syntax: * * math.ceil(x) * math.ceil(x, n) * * Examples: * * math.ceil(3.2) // returns number 4 * math.ceil(3.8) // returns number 4 * math.ceil(-4.2) // returns number -4 * math.ceil(-4.7) // returns number -4 * * math.ceil(3.212, 2) // returns number 3.22 * math.ceil(3.288, 2) // returns number 3.29 * math.ceil(-4.212, 2) // returns number -4.21 * math.ceil(-4.782, 2) // returns number -4.78 * * const c = math.complex(3.24, -2.71) * math.ceil(c) // returns Complex 4 - 2i * math.ceil(c, 1) // returns Complex 3.3 - 2.7i * * math.ceil([3.2, 3.8, -4.7]) // returns Array [4, 4, -4] * math.ceil([3.21, 3.82, -4.71], 1) // returns Array [3.3, 3.9, -4.7] * * See also: * * floor, fix, round * * @param {number | BigNumber | Fraction | Complex | Array | Matrix} x Number to be rounded * @param {number | BigNumber | Array} [n=0] Number of decimals * @return {number | BigNumber | Fraction | Complex | Array | Matrix} Rounded value */ return typed('ceil', { number: ceilNumber.signatures.number, 'number,number': ceilNumber.signatures['number,number'], Complex: function Complex(x) { return x.ceil(); }, 'Complex, number': function ComplexNumber(x, n) { return x.ceil(n); }, 'Complex, BigNumber': function ComplexBigNumber(x, n) { return x.ceil(n.toNumber()); }, BigNumber: function BigNumber(x) { if ((0, _nearlyEqual.nearlyEqual)(x, round(x), config.epsilon)) { return round(x); } else { return x.ceil(); } }, 'BigNumber, BigNumber': function BigNumberBigNumber(x, n) { if ((0, _nearlyEqual.nearlyEqual)(x, round(x, n), config.epsilon)) { return round(x, n); } else { return x.toDecimalPlaces(n.toNumber(), _decimal["default"].ROUND_CEIL); } }, Fraction: function Fraction(x) { return x.ceil(); }, 'Fraction, number': function FractionNumber(x, n) { return x.ceil(n); }, 'Fraction, BigNumber': function FractionBigNumber(x, n) { return x.ceil(n.toNumber()); }, 'Array | Matrix': typed.referToSelf(function (self) { return function (x) { // deep map collection, skip zeros since ceil(0) = 0 return (0, _collection.deepMap)(x, self, true); }; }), 'Array, number | BigNumber': typed.referToSelf(function (self) { return function (x, n) { // deep map collection, skip zeros since ceil(0) = 0 return (0, _collection.deepMap)(x, function (i) { return self(i, n); }, true); }; }), 'SparseMatrix, number | BigNumber': typed.referToSelf(function (self) { return function (x, y) { return matAlgo11xS0s(x, y, self, false); }; }), 'DenseMatrix, number | BigNumber': typed.referToSelf(function (self) { return function (x, y) { return matAlgo14xDs(x, y, self, false); }; }), 'number | Complex | Fraction | BigNumber, Array': typed.referToSelf(function (self) { return function (x, y) { // use matrix implementation return matAlgo14xDs(matrix(y), x, self, true).valueOf(); }; }), 'number | Complex | Fraction | BigNumber, Matrix': typed.referToSelf(function (self) { return function (x, y) { if (equalScalar(x, 0)) return zeros(y.size(), y.storage()); if (y.storage() === 'dense') { return matAlgo14xDs(y, x, self, true); } return matAlgo12xSfs(y, x, self, true); }; }) }); });