UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

126 lines (125 loc) 4.63 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createSylvester = void 0; var _factory = require("../../utils/factory.js"); var name = 'sylvester'; var dependencies = ['typed', 'schur', 'matrixFromColumns', 'matrix', 'multiply', 'range', 'concat', 'transpose', 'index', 'subset', 'add', 'subtract', 'identity', 'lusolve', 'abs']; var createSylvester = exports.createSylvester = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) { var typed = _ref.typed, schur = _ref.schur, matrixFromColumns = _ref.matrixFromColumns, matrix = _ref.matrix, multiply = _ref.multiply, range = _ref.range, concat = _ref.concat, transpose = _ref.transpose, index = _ref.index, subset = _ref.subset, add = _ref.add, subtract = _ref.subtract, identity = _ref.identity, lusolve = _ref.lusolve, abs = _ref.abs; /** * * Solves the real-valued Sylvester equation AX+XB=C for X, where A, B and C are * matrices of appropriate dimensions, being A and B squared. Notice that other * equivalent definitions for the Sylvester equation exist and this function * assumes the one presented in the original publication of the the Bartels- * Stewart algorithm, which is implemented by this function. * https://en.wikipedia.org/wiki/Sylvester_equation * * Syntax: * * math.sylvester(A, B, C) * * Examples: * * const A = [[-1, -2], [1, 1]] * const B = [[2, -1], [1, -2]] * const C = [[-3, 2], [3, 0]] * math.sylvester(A, B, C) // returns DenseMatrix [[-0.25, 0.25], [1.5, -1.25]] * * See also: * * schur, lyap * * @param {Matrix | Array} A Matrix A * @param {Matrix | Array} B Matrix B * @param {Matrix | Array} C Matrix C * @return {Matrix | Array} Matrix X, solving the Sylvester equation */ return typed(name, { 'Matrix, Matrix, Matrix': _sylvester, 'Array, Matrix, Matrix': function ArrayMatrixMatrix(A, B, C) { return _sylvester(matrix(A), B, C); }, 'Array, Array, Matrix': function ArrayArrayMatrix(A, B, C) { return _sylvester(matrix(A), matrix(B), C); }, 'Array, Matrix, Array': function ArrayMatrixArray(A, B, C) { return _sylvester(matrix(A), B, matrix(C)); }, 'Matrix, Array, Matrix': function MatrixArrayMatrix(A, B, C) { return _sylvester(A, matrix(B), C); }, 'Matrix, Array, Array': function MatrixArrayArray(A, B, C) { return _sylvester(A, matrix(B), matrix(C)); }, 'Matrix, Matrix, Array': function MatrixMatrixArray(A, B, C) { return _sylvester(A, B, matrix(C)); }, 'Array, Array, Array': function ArrayArrayArray(A, B, C) { return _sylvester(matrix(A), matrix(B), matrix(C)).toArray(); } }); function _sylvester(A, B, C) { var n = B.size()[0]; var m = A.size()[0]; var sA = schur(A); var F = sA.T; var U = sA.U; var sB = schur(multiply(-1, B)); var G = sB.T; var V = sB.U; var D = multiply(multiply(transpose(U), C), V); var all = range(0, m); var y = []; var hc = function hc(a, b) { return concat(a, b, 1); }; var vc = function vc(a, b) { return concat(a, b, 0); }; for (var k = 0; k < n; k++) { if (k < n - 1 && abs(subset(G, index(k + 1, k))) > 1e-5) { var RHS = vc(subset(D, index(all, k)), subset(D, index(all, k + 1))); for (var j = 0; j < k; j++) { RHS = add(RHS, vc(multiply(y[j], subset(G, index(j, k))), multiply(y[j], subset(G, index(j, k + 1))))); } var gkk = multiply(identity(m), multiply(-1, subset(G, index(k, k)))); var gmk = multiply(identity(m), multiply(-1, subset(G, index(k + 1, k)))); var gkm = multiply(identity(m), multiply(-1, subset(G, index(k, k + 1)))); var gmm = multiply(identity(m), multiply(-1, subset(G, index(k + 1, k + 1)))); var LHS = vc(hc(add(F, gkk), gmk), hc(gkm, add(F, gmm))); var yAux = lusolve(LHS, RHS); y[k] = yAux.subset(index(range(0, m), 0)); y[k + 1] = yAux.subset(index(range(m, 2 * m), 0)); k++; } else { var _RHS = subset(D, index(all, k)); for (var _j = 0; _j < k; _j++) { _RHS = add(_RHS, multiply(y[_j], subset(G, index(_j, k)))); } var _gkk = subset(G, index(k, k)); var _LHS = subtract(F, multiply(_gkk, identity(m))); y[k] = lusolve(_LHS, _RHS); } } var Y = matrix(matrixFromColumns.apply(void 0, y)); var X = multiply(U, multiply(Y, transpose(V))); return X; } });