mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif
180 lines (147 loc) • 4.19 kB
JavaScript
import { isOperatorNode } from '../../../utils/is.js';
import { factory } from '../../../utils/factory.js';
import { hasOwnProperty } from '../../../utils/object.js';
var name = 'simplifyUtil';
var dependencies = ['FunctionNode', 'OperatorNode', 'SymbolNode'];
export var createUtil = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
FunctionNode,
OperatorNode,
SymbolNode
} = _ref;
// TODO commutative/associative properties rely on the arguments
// e.g. multiply is not commutative for matrices
// The properties should be calculated from an argument to simplify, or possibly something in math.config
// the other option is for typed() to specify a return type so that we can evaluate the type of arguments
var commutative = {
add: true,
multiply: true
};
var associative = {
add: true,
multiply: true
};
function isCommutative(node, context) {
if (!isOperatorNode(node)) {
return true;
}
var name = node.fn.toString();
if (context && hasOwnProperty(context, name) && hasOwnProperty(context[name], 'commutative')) {
return context[name].commutative;
}
return commutative[name] || false;
}
function isAssociative(node, context) {
if (!isOperatorNode(node)) {
return false;
}
var name = node.fn.toString();
if (context && hasOwnProperty(context, name) && hasOwnProperty(context[name], 'associative')) {
return context[name].associative;
}
return associative[name] || false;
}
/**
* Flatten all associative operators in an expression tree.
* Assumes parentheses have already been removed.
*/
function flatten(node) {
if (!node.args || node.args.length === 0) {
return node;
}
node.args = allChildren(node);
for (var i = 0; i < node.args.length; i++) {
flatten(node.args[i]);
}
}
/**
* Get the children of a node as if it has been flattened.
* TODO implement for FunctionNodes
*/
function allChildren(node) {
var op;
var children = [];
var findChildren = function findChildren(node) {
for (var i = 0; i < node.args.length; i++) {
var child = node.args[i];
if (isOperatorNode(child) && op === child.op) {
findChildren(child);
} else {
children.push(child);
}
}
};
if (isAssociative(node)) {
op = node.op;
findChildren(node);
return children;
} else {
return node.args;
}
}
/**
* Unflatten all flattened operators to a right-heavy binary tree.
*/
function unflattenr(node) {
if (!node.args || node.args.length === 0) {
return;
}
var makeNode = createMakeNodeFunction(node);
var l = node.args.length;
for (var i = 0; i < l; i++) {
unflattenr(node.args[i]);
}
if (l > 2 && isAssociative(node)) {
var curnode = node.args.pop();
while (node.args.length > 0) {
curnode = makeNode([node.args.pop(), curnode]);
}
node.args = curnode.args;
}
}
/**
* Unflatten all flattened operators to a left-heavy binary tree.
*/
function unflattenl(node) {
if (!node.args || node.args.length === 0) {
return;
}
var makeNode = createMakeNodeFunction(node);
var l = node.args.length;
for (var i = 0; i < l; i++) {
unflattenl(node.args[i]);
}
if (l > 2 && isAssociative(node)) {
var curnode = node.args.shift();
while (node.args.length > 0) {
curnode = makeNode([curnode, node.args.shift()]);
}
node.args = curnode.args;
}
}
function createMakeNodeFunction(node) {
if (isOperatorNode(node)) {
return function (args) {
try {
return new OperatorNode(node.op, node.fn, args, node.implicit);
} catch (err) {
console.error(err);
return [];
}
};
} else {
return function (args) {
return new FunctionNode(new SymbolNode(node.name), args);
};
}
}
return {
createMakeNodeFunction,
isCommutative,
isAssociative,
flatten,
allChildren,
unflattenr,
unflattenl
};
});