UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with dif

72 lines (64 loc) 2.4 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createStirlingS2 = void 0; var _factory = require("../../utils/factory.js"); var name = 'stirlingS2'; var dependencies = ['typed', 'addScalar', 'subtract', 'multiplyScalar', 'divideScalar', 'pow', 'factorial', 'combinations', 'isNegative', 'isInteger', 'larger']; var createStirlingS2 = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) { var typed = _ref.typed, addScalar = _ref.addScalar, subtract = _ref.subtract, multiplyScalar = _ref.multiplyScalar, divideScalar = _ref.divideScalar, pow = _ref.pow, factorial = _ref.factorial, combinations = _ref.combinations, isNegative = _ref.isNegative, isInteger = _ref.isInteger, larger = _ref.larger; /** * The Stirling numbers of the second kind, counts the number of ways to partition * a set of n labelled objects into k nonempty unlabelled subsets. * stirlingS2 only takes integer arguments. * The following condition must be enforced: k <= n. * * If n = k or k = 1, then s(n,k) = 1 * * Syntax: * * math.stirlingS2(n, k) * * Examples: * * math.stirlingS2(5, 3) //returns 25 * * See also: * * bellNumbers * * @param {Number | BigNumber} n Total number of objects in the set * @param {Number | BigNumber} k Number of objects in the subset * @return {Number | BigNumber} S(n,k) */ return typed(name, { 'number | BigNumber, number | BigNumber': function numberBigNumberNumberBigNumber(n, k) { if (!isInteger(n) || isNegative(n) || !isInteger(k) || isNegative(k)) { throw new TypeError('Non-negative integer value expected in function stirlingS2'); } else if (larger(k, n)) { throw new TypeError('k must be less than or equal to n in function stirlingS2'); } // 1/k! Sum(i=0 -> k) [(-1)^(k-i)*C(k,j)* i^n] var kFactorial = factorial(k); var result = 0; for (var i = 0; i <= k; i++) { var negativeOne = pow(-1, subtract(k, i)); var kChooseI = combinations(k, i); var iPower = pow(i, n); result = addScalar(result, multiplyScalar(multiplyScalar(kChooseI, iPower), negativeOne)); } return divideScalar(result, kFactorial); } }); }); exports.createStirlingS2 = createStirlingS2;