UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser and offers an integrated solution to work with numbers, big numbers, complex numbers, units, and matrices.

114 lines (99 loc) 3.84 kB
module.exports = function (math) { var Matrix = require('../../type/Matrix'), BigNumber = math.type.BigNumber, collection = require('../../type/collection'), isCollection = collection.isCollection, isString = require('../../util/string').isString, DEFAULT_NORMALIZATION = 'unbiased'; /** * Compute the variance of a list of values * In case of a (multi dimensional) array or matrix, the variance over all * elements will be calculated. * * var(a, b, c, ...) * var(A) * var(A, normalization) * * Where `normalization` is a string having one of the following values: * * @param {Array | Matrix} array A single matrix or or multiple scalar values * @param {String} [normalization='unbiased'] * Determines how to normalize the variance: * - 'unbiased' (default) The sum of squared errors is divided by (n - 1) * - 'uncorrected' The sum of squared errors is divided by n * - 'biased' The sum of squared errors is divided by (n + 1) * @return {*} res */ math['var'] = function variance(array, normalization) { if (arguments.length == 0) { throw new SyntaxError('Function var requires one or more parameters (0 provided)'); } if (isCollection(array)) { if (arguments.length == 1) { // var([a, b, c, d, ...]) return _var(array, DEFAULT_NORMALIZATION); } else if (arguments.length == 2) { // var([a, b, c, d, ...], normalization) if (!isString(normalization)) { throw new Error('String expected for parameter normalization'); } return _var(array, normalization); } /* TODO: implement var(A [, normalization], dim) else if (arguments.length == 3) { // var([a, b, c, d, ...], dim) // var([a, b, c, d, ...], normalization, dim) //return collection.reduce(arguments[0], arguments[1], ...); } */ else { throw new SyntaxError('Wrong number of parameters'); } } else { // var(a, b, c, d, ...) return _var(arguments, DEFAULT_NORMALIZATION); } }; /** * Recursively calculate the variance of an n-dimensional array * @param {Array} array * @param {String} normalization * Determines how to normalize the variance: * - 'unbiased' The sum of squared errors is divided by (n - 1) * - 'uncorrected' The sum of squared errors is divided by n * - 'biased' The sum of squared errors is divided by (n + 1) * @return {Number | BigNumber} variance * @private */ function _var(array, normalization) { var sum = 0; var num = 0; // calculate the mean and number of elements collection.deepForEach(array, function (value) { sum = math.add(sum, value); num++; }); if (num === 0) throw new Error('Cannot calculate var of an empty array'); var mean = math.divide(sum, num); // calculate the variance sum = 0; collection.deepForEach(array, function (value) { var diff = math.subtract(value, mean); sum = math.add(sum, math.multiply(diff, diff)); }); switch (normalization) { case 'uncorrected': return math.divide(sum, num); case 'biased': return math.divide(sum, num + 1); case 'unbiased': var zero = (sum instanceof BigNumber) ? new BigNumber(0) : 0; return (num == 1) ? zero : math.divide(sum, num - 1); default: throw new Error('Unknown normalization "' + normalization + '". ' + 'Choose "unbiased" (default), "uncorrected", or "biased".'); } } };