mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser and offers an integrated solution to work with numbers, big numbers, complex numbers, units, and matrices.
138 lines (120 loc) • 3.43 kB
JavaScript
module.exports = function (math) {
var util = require('../../util/index'),
Matrix = require('../../type/Matrix'),
object = util.object,
string = util.string;
/**
* @constructor det
* Calculate the determinant of a matrix
*
* det(x)
*
* @param {Array | Matrix} x
* @return {Number} determinant
*/
math.det = function det (x) {
if (arguments.length != 1) {
throw new math.error.ArgumentsError('det', arguments.length, 1);
}
var size;
if (x instanceof Matrix) {
size = x.size();
}
else if (x instanceof Array) {
x = new Matrix(x);
size = x.size();
}
else {
// a scalar
size = [];
}
switch (size.length) {
case 0:
// scalar
return object.clone(x);
case 1:
// vector
if (size[0] == 1) {
return object.clone(x.valueOf()[0]);
}
else {
throw new RangeError('Matrix must be square ' +
'(size: ' + string.format(size) + ')');
}
case 2:
// two dimensional array
var rows = size[0];
var cols = size[1];
if (rows == cols) {
return _det(x.clone().valueOf(), rows, cols);
}
else {
throw new RangeError('Matrix must be square ' +
'(size: ' + string.format(size) + ')');
}
default:
// multi dimensional array
throw new RangeError('Matrix must be two dimensional ' +
'(size: ' + string.format(size) + ')');
}
};
/**
* Calculate the determinant of a matrix
* @param {Array[]} matrix A square, two dimensional matrix
* @param {Number} rows Number of rows of the matrix (zero-based)
* @param {Number} cols Number of columns of the matrix (zero-based)
* @returns {Number} det
* @private
*/
function _det (matrix, rows, cols) {
if (rows == 1) {
// this is a 1 x 1 matrix
return object.clone(matrix[0][0]);
}
else if (rows == 2) {
// this is a 2 x 2 matrix
// the determinant of [a11,a12;a21,a22] is det = a11*a22-a21*a12
return math.subtract(
math.multiply(matrix[0][0], matrix[1][1]),
math.multiply(matrix[1][0], matrix[0][1])
);
}
else {
// this is an n x n matrix
function compute_mu(matrix) {
var i, j;
// Compute the matrix with zero lower triangle, same upper triangle,
// and diagonals given by the negated sum of the below diagonal
// elements.
var mu = new Array(matrix.length);
var sum = 0;
for (i = 1; i < matrix.length; i++) {
sum = math.add(sum, matrix[i][i]);
}
for (i = 0; i < matrix.length; i++) {
mu[i] = new Array(matrix.length);
mu[i][i] = math.unary(sum);
for (j = 0; j < i; j++) {
mu[i][j] = 0;
}
for (j = i + 1; j < matrix.length; j++) {
mu[i][j] = matrix[i][j];
}
if (i+1 < matrix.length) {
sum = math.subtract(sum, matrix[i + 1][i + 1]);
}
}
return mu;
}
var fa = matrix;
for (var i = 0; i < rows - 1; i++) {
fa = math.multiply(compute_mu(fa), matrix);
}
if (rows % 2 == 0) {
return math.unary(fa[0][0]);
} else {
return fa[0][0];
}
}
}
};