mathjs
Version:
Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser and offers an integrated solution to work with numbers, big numbers, complex numbers, units, and matrices.
399 lines (362 loc) • 10.6 kB
JavaScript
module.exports = function(math) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
Complex = require('../../type/Complex'),
Matrix = require('../../type/Matrix'),
Unit = require('../../type/Unit'),
collection = require('../../type/collection'),
array = util.array,
isNumber = util.number.isNumber,
isBoolean = util['boolean'].isBoolean,
isComplex = Complex.isComplex,
isArray = Array.isArray,
isUnit = Unit.isUnit;
/**
* Multiply two values.
*
* x * y
* multiply(x, y)
*
* @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix} x
* @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix} y
* @return {Number | BigNumber | Complex | Unit | Array | Matrix} res
*/
math.multiply = function multiply(x, y) {
var res;
if (arguments.length != 2) {
throw new math.error.ArgumentsError('multiply', arguments.length, 2);
}
if (isNumber(x)) {
if (isNumber(y)) {
// number * number
return x * y;
}
else if (isComplex(y)) {
// number * complex
return _multiplyComplex (new Complex(x, 0), y);
}
else if (isUnit(y)) {
res = y.clone();
res.value *= x;
return res;
}
}
if (isComplex(x)) {
if (isNumber(y)) {
// complex * number
return _multiplyComplex (x, new Complex(y, 0));
}
else if (isComplex(y)) {
// complex * complex
return _multiplyComplex (x, y);
}
}
if (x instanceof BigNumber) {
// try to convert to big number
if (isNumber(y)) {
y = BigNumber.convert(y);
}
else if (isBoolean(y)) {
y = new BigNumber(y ? 1 : 0);
}
if (y instanceof BigNumber) {
return x.times(y);
}
// downgrade to Number
return multiply(x.toNumber(), y);
}
if (y instanceof BigNumber) {
// try to convert to big number
if (isNumber(x)) {
x = BigNumber.convert(x);
}
else if (isBoolean(x)) {
x = new BigNumber(x ? 1 : 0);
}
if (x instanceof BigNumber) {
return x.times(y)
}
// downgrade to Number
return multiply(x, y.toNumber());
}
if (isUnit(x)) {
if (isNumber(y)) {
res = x.clone();
res.value *= y;
return res;
}
}
if (isArray(x)) {
if (isArray(y)) {
// array * array
var sizeX = array.size(x);
var sizeY = array.size(y);
if (sizeX.length == 1) {
if (sizeY.length == 1) {
// vector * vector
if (sizeX[0] != sizeY[0]) {
throw new RangeError('Dimension mismatch in multiplication. ' +
'Length of A must match length of B ' +
'(A is ' + sizeX[0] +
', B is ' + sizeY[0] +
sizeX[0] + ' != ' + sizeY[0] + ')');
}
return _multiplyVectorVector(x, y);
}
else if (sizeY.length == 2) {
// vector * matrix
if (sizeX[0] != sizeY[0]) {
throw new RangeError('Dimension mismatch in multiplication. ' +
'Length of A must match rows of B ' +
'(A is ' + sizeX[0] +
', B is ' + sizeY[0] + 'x' + sizeY[1] + ', ' +
sizeX[0] + ' != ' + sizeY[0] + ')');
}
return _multiplyVectorMatrix(x, y);
}
else {
throw new Error('Can only multiply a 1 or 2 dimensional matrix ' +
'(B has ' + sizeY.length + ' dimensions)');
}
}
else if (sizeX.length == 2) {
if (sizeY.length == 1) {
// matrix * vector
if (sizeX[1] != sizeY[0]) {
throw new RangeError('Dimension mismatch in multiplication. ' +
'Columns of A must match length of B ' +
'(A is ' + sizeX[0] + 'x' + sizeX[0] +
', B is ' + sizeY[0] + ', ' +
sizeX[1] + ' != ' + sizeY[0] + ')');
}
return _multiplyMatrixVector(x, y);
}
else if (sizeY.length == 2) {
// matrix * matrix
if (sizeX[1] != sizeY[0]) {
throw new RangeError('Dimension mismatch in multiplication. ' +
'Columns of A must match rows of B ' +
'(A is ' + sizeX[0] + 'x' + sizeX[1] +
', B is ' + sizeY[0] + 'x' + sizeY[1] + ', ' +
sizeX[1] + ' != ' + sizeY[0] + ')');
}
return _multiplyMatrixMatrix(x, y);
}
else {
throw new Error('Can only multiply a 1 or 2 dimensional matrix ' +
'(B has ' + sizeY.length + ' dimensions)');
}
}
else {
throw new Error('Can only multiply a 1 or 2 dimensional matrix ' +
'(A has ' + sizeX.length + ' dimensions)');
}
}
else if (y instanceof Matrix) {
// array * matrix
return new Matrix(multiply(x, y.valueOf()));
}
else {
// array * scalar
return collection.deepMap2(x, y, multiply);
}
}
if (x instanceof Matrix) {
if (y instanceof Matrix) {
// matrix * matrix
return new Matrix(multiply(x.valueOf(), y.valueOf()));
}
else {
// matrix * array
// matrix * scalar
return new Matrix(multiply(x.valueOf(), y));
}
}
if (isArray(y)) {
// scalar * array
return collection.deepMap2(x, y, multiply);
}
else if (y instanceof Matrix) {
// scalar * matrix
return new Matrix(collection.deepMap2(x, y.valueOf(), multiply));
}
if (isBoolean(x)) {
return multiply(+x, y);
}
if (isBoolean(y)) {
return multiply(x, +y);
}
throw new math.error.UnsupportedTypeError('multiply', math['typeof'](x), math['typeof'](y));
};
/**
* Multiply two 2-dimensional matrices.
* The size of the matrices is not validated.
* @param {Array} x A 2d matrix
* @param {Array} y A 2d matrix
* @return {Array} result
* @private
*/
function _multiplyMatrixMatrix(x, y) {
// TODO: performance of matrix multiplication can be improved
var res = [],
rows = x.length,
cols = y[0].length,
num = x[0].length;
for (var r = 0; r < rows; r++) {
res[r] = [];
for (var c = 0; c < cols; c++) {
var result = null;
for (var n = 0; n < num; n++) {
var p = math.multiply(x[r][n], y[n][c]);
result = (result === null) ? p : math.add(result, p);
}
res[r][c] = result;
}
}
return res;
}
/**
* Multiply a vector with a 2-dimensional matrix
* The size of the matrices is not validated.
* @param {Array} x A vector
* @param {Array} y A 2d matrix
* @return {Array} result
* @private
*/
function _multiplyVectorMatrix(x, y) {
// TODO: performance of matrix multiplication can be improved
var res = [],
rows = y.length,
cols = y[0].length;
for (var c = 0; c < cols; c++) {
var result = null;
for (var r = 0; r < rows; r++) {
var p = math.multiply(x[r], y[r][c]);
result = (r === 0) ? p : math.add(result, p);
}
res[c] = result;
}
return res;
}
/**
* Multiply a 2-dimensional matrix with a vector
* The size of the matrices is not validated.
* @param {Array} x A 2d matrix
* @param {Array} y A vector
* @return {Array} result
* @private
*/
function _multiplyMatrixVector(x, y) {
// TODO: performance of matrix multiplication can be improved
var res = [],
rows = x.length,
cols = x[0].length;
for (var r = 0; r < rows; r++) {
var result = null;
for (var c = 0; c < cols; c++) {
var p = math.multiply(x[r][c], y[c]);
result = (c === 0) ? p : math.add(result, p);
}
res[r] = result;
}
return res;
}
/**
* Multiply two vectors, calculate the dot product
* The size of the matrices is not validated.
* @param {Array} x A vector
* @param {Array} y A vector
* @return {Number} dotProduct
* @private
*/
function _multiplyVectorVector(x, y) {
// TODO: performance of matrix multiplication can be improved
var len = x.length;
if (!len) {
throw new Error('Cannot multiply two empty vectors');
}
var dot = 0;
for (var i = 0; i < len; i++) {
dot = math.add(dot, math.multiply(x[i], y[i]));
}
return dot;
}
/**
* Multiply two complex numbers. x * y or multiply(x, y)
* @param {Complex} x
* @param {Complex} y
* @return {Complex | Number} res
* @private
*/
function _multiplyComplex (x, y) {
// Note: we test whether x or y are pure real or pure complex,
// to prevent unnecessary NaN values. For example, Infinity*i should
// result in Infinity*i, and not in NaN+Infinity*i
if (x.im == 0) {
// x is pure real
if (y.im == 0) {
// y is pure real
return new Complex(x.re * y.re, 0);
}
else if (y.re == 0) {
// y is pure complex
return new Complex(
0,
x.re * y.im
);
}
else {
// y has a real and complex part
return new Complex(
x.re * y.re,
x.re * y.im
);
}
}
else if (x.re == 0) {
// x is pure complex
if (y.im == 0) {
// y is pure real
return new Complex(
0,
x.im * y.re
);
}
else if (y.re == 0) {
// y is pure complex
return new Complex(-x.im * y.im, 0);
}
else {
// y has a real and complex part
return new Complex(
-x.im * y.im,
x.im * y.re
);
}
}
else {
// x has a real and complex part
if (y.im == 0) {
// y is pure real
return new Complex(
x.re * y.re,
x.im * y.re
);
}
else if (y.re == 0) {
// y is pure complex
return new Complex(
-x.im * y.im,
x.re * y.im
);
}
else {
// y has a real and complex part
return new Complex(
x.re * y.re - x.im * y.im,
x.re * y.im + x.im * y.re
);
}
}
}
};