UNPKG

mathjs

Version:

Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser and offers an integrated solution to work with numbers, big numbers, complex numbers, units, and matrices.

399 lines (362 loc) 10.6 kB
module.exports = function(math) { var util = require('../../util/index'), BigNumber = math.type.BigNumber, Complex = require('../../type/Complex'), Matrix = require('../../type/Matrix'), Unit = require('../../type/Unit'), collection = require('../../type/collection'), array = util.array, isNumber = util.number.isNumber, isBoolean = util['boolean'].isBoolean, isComplex = Complex.isComplex, isArray = Array.isArray, isUnit = Unit.isUnit; /** * Multiply two values. * * x * y * multiply(x, y) * * @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix} x * @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix} y * @return {Number | BigNumber | Complex | Unit | Array | Matrix} res */ math.multiply = function multiply(x, y) { var res; if (arguments.length != 2) { throw new math.error.ArgumentsError('multiply', arguments.length, 2); } if (isNumber(x)) { if (isNumber(y)) { // number * number return x * y; } else if (isComplex(y)) { // number * complex return _multiplyComplex (new Complex(x, 0), y); } else if (isUnit(y)) { res = y.clone(); res.value *= x; return res; } } if (isComplex(x)) { if (isNumber(y)) { // complex * number return _multiplyComplex (x, new Complex(y, 0)); } else if (isComplex(y)) { // complex * complex return _multiplyComplex (x, y); } } if (x instanceof BigNumber) { // try to convert to big number if (isNumber(y)) { y = BigNumber.convert(y); } else if (isBoolean(y)) { y = new BigNumber(y ? 1 : 0); } if (y instanceof BigNumber) { return x.times(y); } // downgrade to Number return multiply(x.toNumber(), y); } if (y instanceof BigNumber) { // try to convert to big number if (isNumber(x)) { x = BigNumber.convert(x); } else if (isBoolean(x)) { x = new BigNumber(x ? 1 : 0); } if (x instanceof BigNumber) { return x.times(y) } // downgrade to Number return multiply(x, y.toNumber()); } if (isUnit(x)) { if (isNumber(y)) { res = x.clone(); res.value *= y; return res; } } if (isArray(x)) { if (isArray(y)) { // array * array var sizeX = array.size(x); var sizeY = array.size(y); if (sizeX.length == 1) { if (sizeY.length == 1) { // vector * vector if (sizeX[0] != sizeY[0]) { throw new RangeError('Dimension mismatch in multiplication. ' + 'Length of A must match length of B ' + '(A is ' + sizeX[0] + ', B is ' + sizeY[0] + sizeX[0] + ' != ' + sizeY[0] + ')'); } return _multiplyVectorVector(x, y); } else if (sizeY.length == 2) { // vector * matrix if (sizeX[0] != sizeY[0]) { throw new RangeError('Dimension mismatch in multiplication. ' + 'Length of A must match rows of B ' + '(A is ' + sizeX[0] + ', B is ' + sizeY[0] + 'x' + sizeY[1] + ', ' + sizeX[0] + ' != ' + sizeY[0] + ')'); } return _multiplyVectorMatrix(x, y); } else { throw new Error('Can only multiply a 1 or 2 dimensional matrix ' + '(B has ' + sizeY.length + ' dimensions)'); } } else if (sizeX.length == 2) { if (sizeY.length == 1) { // matrix * vector if (sizeX[1] != sizeY[0]) { throw new RangeError('Dimension mismatch in multiplication. ' + 'Columns of A must match length of B ' + '(A is ' + sizeX[0] + 'x' + sizeX[0] + ', B is ' + sizeY[0] + ', ' + sizeX[1] + ' != ' + sizeY[0] + ')'); } return _multiplyMatrixVector(x, y); } else if (sizeY.length == 2) { // matrix * matrix if (sizeX[1] != sizeY[0]) { throw new RangeError('Dimension mismatch in multiplication. ' + 'Columns of A must match rows of B ' + '(A is ' + sizeX[0] + 'x' + sizeX[1] + ', B is ' + sizeY[0] + 'x' + sizeY[1] + ', ' + sizeX[1] + ' != ' + sizeY[0] + ')'); } return _multiplyMatrixMatrix(x, y); } else { throw new Error('Can only multiply a 1 or 2 dimensional matrix ' + '(B has ' + sizeY.length + ' dimensions)'); } } else { throw new Error('Can only multiply a 1 or 2 dimensional matrix ' + '(A has ' + sizeX.length + ' dimensions)'); } } else if (y instanceof Matrix) { // array * matrix return new Matrix(multiply(x, y.valueOf())); } else { // array * scalar return collection.deepMap2(x, y, multiply); } } if (x instanceof Matrix) { if (y instanceof Matrix) { // matrix * matrix return new Matrix(multiply(x.valueOf(), y.valueOf())); } else { // matrix * array // matrix * scalar return new Matrix(multiply(x.valueOf(), y)); } } if (isArray(y)) { // scalar * array return collection.deepMap2(x, y, multiply); } else if (y instanceof Matrix) { // scalar * matrix return new Matrix(collection.deepMap2(x, y.valueOf(), multiply)); } if (isBoolean(x)) { return multiply(+x, y); } if (isBoolean(y)) { return multiply(x, +y); } throw new math.error.UnsupportedTypeError('multiply', math['typeof'](x), math['typeof'](y)); }; /** * Multiply two 2-dimensional matrices. * The size of the matrices is not validated. * @param {Array} x A 2d matrix * @param {Array} y A 2d matrix * @return {Array} result * @private */ function _multiplyMatrixMatrix(x, y) { // TODO: performance of matrix multiplication can be improved var res = [], rows = x.length, cols = y[0].length, num = x[0].length; for (var r = 0; r < rows; r++) { res[r] = []; for (var c = 0; c < cols; c++) { var result = null; for (var n = 0; n < num; n++) { var p = math.multiply(x[r][n], y[n][c]); result = (result === null) ? p : math.add(result, p); } res[r][c] = result; } } return res; } /** * Multiply a vector with a 2-dimensional matrix * The size of the matrices is not validated. * @param {Array} x A vector * @param {Array} y A 2d matrix * @return {Array} result * @private */ function _multiplyVectorMatrix(x, y) { // TODO: performance of matrix multiplication can be improved var res = [], rows = y.length, cols = y[0].length; for (var c = 0; c < cols; c++) { var result = null; for (var r = 0; r < rows; r++) { var p = math.multiply(x[r], y[r][c]); result = (r === 0) ? p : math.add(result, p); } res[c] = result; } return res; } /** * Multiply a 2-dimensional matrix with a vector * The size of the matrices is not validated. * @param {Array} x A 2d matrix * @param {Array} y A vector * @return {Array} result * @private */ function _multiplyMatrixVector(x, y) { // TODO: performance of matrix multiplication can be improved var res = [], rows = x.length, cols = x[0].length; for (var r = 0; r < rows; r++) { var result = null; for (var c = 0; c < cols; c++) { var p = math.multiply(x[r][c], y[c]); result = (c === 0) ? p : math.add(result, p); } res[r] = result; } return res; } /** * Multiply two vectors, calculate the dot product * The size of the matrices is not validated. * @param {Array} x A vector * @param {Array} y A vector * @return {Number} dotProduct * @private */ function _multiplyVectorVector(x, y) { // TODO: performance of matrix multiplication can be improved var len = x.length; if (!len) { throw new Error('Cannot multiply two empty vectors'); } var dot = 0; for (var i = 0; i < len; i++) { dot = math.add(dot, math.multiply(x[i], y[i])); } return dot; } /** * Multiply two complex numbers. x * y or multiply(x, y) * @param {Complex} x * @param {Complex} y * @return {Complex | Number} res * @private */ function _multiplyComplex (x, y) { // Note: we test whether x or y are pure real or pure complex, // to prevent unnecessary NaN values. For example, Infinity*i should // result in Infinity*i, and not in NaN+Infinity*i if (x.im == 0) { // x is pure real if (y.im == 0) { // y is pure real return new Complex(x.re * y.re, 0); } else if (y.re == 0) { // y is pure complex return new Complex( 0, x.re * y.im ); } else { // y has a real and complex part return new Complex( x.re * y.re, x.re * y.im ); } } else if (x.re == 0) { // x is pure complex if (y.im == 0) { // y is pure real return new Complex( 0, x.im * y.re ); } else if (y.re == 0) { // y is pure complex return new Complex(-x.im * y.im, 0); } else { // y has a real and complex part return new Complex( -x.im * y.im, x.im * y.re ); } } else { // x has a real and complex part if (y.im == 0) { // y is pure real return new Complex( x.re * y.re, x.im * y.re ); } else if (y.re == 0) { // y is pure complex return new Complex( -x.im * y.im, x.re * y.im ); } else { // y has a real and complex part return new Complex( x.re * y.re - x.im * y.im, x.re * y.im + x.im * y.re ); } } } };