UNPKG

math-erf

Version:
354 lines (328 loc) 10.2 kB
'use strict'; /** * NOTE: the following copyright and license, as well as the long comment were part of the original implementation available as part of [FreeBSD]{@link https://svnweb.freebsd.org/base/release/9.3.0/lib/msun/src/s_erf.c?revision=268523&view=co}. * * The implementation follows the original, but has been modified for JavaScript. */ /** * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /** * double erf(double x) * x * 2 |\ * erf(x) = ----------- | exp(-t*t)dt * sqrt(pi) \| * 0 * * erfc(x) = 1-erf(x) * * Note that * * erf(-x) = -erf(x) * erfc(-x) = 2 - erfc(x) * * Method: * 1. For |x| in [0, 0.84375), * * erf(x) = x + x*R(x^2) * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] * * where R = P/Q where P is an odd polynomial of degree 8 and Q is an odd polynomial of degree 10. * * | R - (erf(x)-x)/x | <= 2**-57.90 * * Remark: the formula is derived by noting * * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) * * and that * * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 * * is close to one. The interval is chosen because the fix point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is near 0.6174), and, by some experiment, 0.84375 is chosen to guarantee the error is less than one ulp for erf. * * 2. For |x| in [0.84375,1.25), let s = |x| - 1, and c = 0.84506291151 rounded to single (24 bits) * * erf(x) = sign(x) * (c + P1(s)/Q1(s)) * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 * 1+(c+P1(s)/Q1(s)) if x < 0 * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 * * Remark: here we use the Taylor series expansion at x=1. * * erf(1+s) = erf(1) + s*Poly(s) * = 0.845.. + P1(s)/Q1(s) * * That is, we use a rational approximation to approximate * * erf(1+s) - (c = (single)0.84506291151) * * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] where * * P1(s) = degree 6 poly in s * Q1(s) = degree 6 poly in s * * 3. For x in [1.25,1/0.35(~2.857143)), * * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) * erf(x) = 1 - erfc(x) * * where * * R1(z) = degree 7 poly in z, (z=1/x^2) * S1(z) = degree 8 poly in z * * 4. For x in [1/0.35,28], * * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6 < x < 0 * = 2.0 - tiny if x <= -6 * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else * erf(x) = sign(x)*(1.0 - tiny) * * where * * R2(z) = degree 6 poly in z, (z=1/x^2) * S2(z) = degree 7 poly in z * * Note1: * To compute exp(-x*x-0.5625+R/S), let s be a single precision number and s := x; then * * -x*x = -s*s + (s-x)*(s+x) * exp(-x*x-0.5626+R/S) = exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); * * Note2: * Here 4 and 5 make use of the asymptotic series * * exp(-x*x) * erfc(x) ~ ----------- * ( 1 + Poly(1/x^2) ) * x*sqrt(pi) * * We use a rational approximation to approximate * * g(s) = f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 * * Here is the error bound for R1/S1 and R2/S2 * * |R1/S1 - f(x)| < 2**(-62.57) * |R2/S2 - f(x)| < 2**(-61.52) * * 5. For inf > x >= 28, * * erf(x) = sign(x) * (1 - tiny) (raise inexact) * erfc(x) = tiny*tiny (raise underflow) if x > 0 * = 2 - tiny if x<0 * * 6. Special cases: * * erf(0) = 0 * erf(inf) = 1 * erf(-inf) = -1 * erfc(0) = 1 * erfc(inf) = 0 * erfc(-inf) = 2, * erf(NaN) is NaN * erfc(NaN) is NaN */ // MODULES // var evalpoly = require( 'math-evalpoly' ).factory; var exp = require( 'math-exp' ); var setLowWord = require( 'math-float64-set-low-word' ); // CONSTANTS // var PINF = require( 'const-pinf-float64' ); var NINF = require( 'const-ninf-float64' ); var TINY = 1e-300; var VERY_TINY = 2.848094538889218e-306; // 0x00800000, 0x00000000 // 2**-28 = 1/(1<<28) = 1/268435456 var SMALL = 3.725290298461914e-9; var ERX = 8.45062911510467529297e-1; // 0x3FEB0AC1, 0x60000000 // Coefficients for approximation to erf on [0, 0.84375) var EFX = 1.28379167095512586316e-1; // 0x3FC06EBA, 0x8214DB69 var EFX8 = 1.02703333676410069053; // 0x3FF06EBA, 0x8214DB69 var PPC = 1.28379167095512558561e-1; // 0x3FC06EBA, 0x8214DB68 var PP = [ -3.25042107247001499370e-1, // 0xBFD4CD7D, 0x691CB913 -2.84817495755985104766e-2, // 0xBF9D2A51, 0xDBD7194F -5.77027029648944159157e-3, // 0xBF77A291, 0x236668E4 -2.37630166566501626084e-5 // 0xBEF8EAD6, 0x120016AC ]; var QQC = 1.0; var QQ = [ 3.97917223959155352819e-1, // 0x3FD97779, 0xCDDADC09 6.50222499887672944485e-2, // 0x3FB0A54C, 0x5536CEBA 5.08130628187576562776e-3, // 0x3F74D022, 0xC4D36B0F 1.32494738004321644526e-4, // 0x3F215DC9, 0x221C1A10 -3.96022827877536812320e-6 // 0xBED09C43, 0x42A26120 ]; // Coefficients for approximation to erf on [0.84375, 1.25) var PAC = -2.36211856075265944077e-3; // 0xBF6359B8, 0xBEF77538 var PA = [ 4.14856118683748331666e-1, // 0x3FDA8D00, 0xAD92B34D -3.72207876035701323847e-1, // 0xBFD7D240, 0xFBB8C3F1 3.18346619901161753674e-1, // 0x3FD45FCA, 0x805120E4 -1.10894694282396677476e-1, // 0xBFBC6398, 0x3D3E28EC 3.54783043256182359371e-2, // 0x3FA22A36, 0x599795EB -2.16637559486879084300e-3 // 0xBF61BF38, 0x0A96073F ]; var QAC = 1.0; var QA = [ 1.06420880400844228286e-1, // 0x3FBB3E66, 0x18EEE323 5.40397917702171048937e-1, // 0x3FE14AF0, 0x92EB6F33 7.18286544141962662868e-2, // 0x3FB2635C, 0xD99FE9A7 1.26171219808761642112e-1, // 0x3FC02660, 0xE763351F 1.36370839120290507362e-2, // 0x3F8BEDC2, 0x6B51DD1C 1.19844998467991074170e-2 // 0x3F888B54, 0x5735151D ]; // Coefficients for approximation to erfc on [1.25, 1/0.35) var RAC = -9.86494403484714822705e-3; // 0xBF843412, 0x600D6435 var RA = [ -6.93858572707181764372e-1, // 0xBFE63416, 0xE4BA7360 -1.05586262253232909814e1, // 0xC0251E04, 0x41B0E726 -6.23753324503260060396e1, // 0xC04F300A, 0xE4CBA38D -1.62396669462573470355e2, // 0xC0644CB1, 0x84282266 -1.84605092906711035994e2, // 0xC067135C, 0xEBCCABB2 -8.12874355063065934246e1, // 0xC0545265, 0x57E4D2F2 -9.81432934416914548592 // 0xC023A0EF, 0xC69AC25C ]; var SAC = 1.0; var SA = [ 1.96512716674392571292e1, // 0x4033A6B9, 0xBD707687 1.37657754143519042600e2, // 0x4061350C, 0x526AE721 4.34565877475229228821e2, // 0x407B290D, 0xD58A1A71 6.45387271733267880336e2, // 0x40842B19, 0x21EC2868 4.29008140027567833386e2, // 0x407AD021, 0x57700314 1.08635005541779435134e2, // 0x405B28A3, 0xEE48AE2C 6.57024977031928170135, // 0x401A47EF, 0x8E484A93 -6.04244152148580987438e-2 // 0xBFAEEFF2, 0xEE749A62 ]; // Coefficients for approximation to erfc on [1/0.35, 28] var RBC = -9.86494292470009928597e-3; // 0xBF843412, 0x39E86F4A var RB = [ -7.99283237680523006574e-1, // 0xBFE993BA, 0x70C285DE -1.77579549177547519889e1, // 0xC031C209, 0x555F995A -1.60636384855821916062e2, // 0xC064145D, 0x43C5ED98 -6.37566443368389627722e2, // 0xC083EC88, 0x1375F228 -1.02509513161107724954e3, // 0xC0900461, 0x6A2E5992 -4.83519191608651397019e2, // 0xC07E384E, 0x9BDC383F ]; var SBC = 1.0; var SB = [ 3.03380607434824582924e1, // 0x403E568B, 0x261D5190 3.25792512996573918826e2, // 0x40745CAE, 0x221B9F0A 1.53672958608443695994e3, // 0x409802EB, 0x189D5118 3.19985821950859553908e3, // 0x40A8FFB7, 0x688C246A 2.55305040643316442583e3, // 0x40A3F219, 0xCEDF3BE6 4.74528541206955367215e2, // 0x407DA874, 0xE79FE763 -2.24409524465858183362e1 // 0xC03670E2, 0x42712D62 ]; // FUNCTIONS // // Compile functions to evaluate polynomials based on the above coefficients... var polyvalPP = evalpoly( PP ); var polyvalQQ = evalpoly( QQ ); var polyvalPA = evalpoly( PA ); var polyvalQA = evalpoly( QA ); var polyvalRA = evalpoly( RA ); var polyvalSA = evalpoly( SA ); var polyvalRB = evalpoly( RB ); var polyvalSB = evalpoly( SB ); // ERF // /** * FUNCTION: erf( x ) * Evaluates the error function. * * @param {Number} x - input value * @returns {Number} evaluated error function */ function erf( x ) { var sign; var ax; var z; var r; var s; var y; var p; var q; // Special case: NaN if ( x !== x ) { return NaN; } // Special case: +infinity if ( x === PINF ) { return 1; } // Special case: -infinity if ( x === NINF ) { return -1; } // Special case: +-0 if ( x === 0 ) { return x; } if ( x < 0 ) { sign = true; ax = -x; } else { sign = false; ax = x; } // |x| < 0.84375 if ( ax < 0.84375 ) { if ( ax < SMALL ) { if ( ax < VERY_TINY ) { // Avoid underflow: return 0.125 * (8.0*x + EFX8*x); } return x + EFX*x; } z = x * x; r = PPC + z*polyvalPP( z ); s = QQC + z*polyvalQQ( z ); y = r / s; return x + x*y; } // 0.84375 <= |x| < 1.25 if ( ax < 1.25 ) { s = ax - 1; p = PAC + s*polyvalPA( s ); q = QAC + s*polyvalQA( s ); if ( sign ) { return -ERX - p/q; } return ERX + p/q; } // +inf > |x| >= 6 if ( ax >= 6 ) { if ( sign ) { return TINY - 1.0; // raise inexact } return 1.0 - TINY; // raise inexact } s = 1.0 / (ax*ax); // |x| < 1/0.35 ~ 2.857143 if ( ax < 2.857142857142857 ) { r = RAC + s*polyvalRA( s ); s = SAC + s*polyvalSA( s ); } // |x| >= 1/0.35 ~ 2.857143 else { r = RBC + s*polyvalRB( s ); s = SBC + s*polyvalSB( s ); } z = setLowWord( ax, 0 ); // pseudo-single (20-bit) precision x r = exp( -z*z - 0.5625 ) * exp( (z-ax)*(z+ax) + r/s ); if ( sign ) { return r/ax - 1; } return 1 - r/ax; } // end FUNCTION erf() // EXPORTS // module.exports = erf;