UNPKG

maplibre-gl

Version:

BSD licensed community fork of mapbox-gl, a WebGL interactive maps library

254 lines (235 loc) 12.2 kB
import {type ReadonlyVec4, vec3} from 'gl-matrix'; import {clamp, createVec3f64, lerp, MAX_VALID_LATITUDE, mod, remapSaturate, scaleZoom, wrap} from '../../util/util'; import {LngLat} from '../lng_lat'; import {EXTENT} from '../../data/extent'; import type Point from '@mapbox/point-geometry'; export function getGlobeCircumferencePixels(transform: {worldSize: number; center: {lat: number}}): number { const radius = getGlobeRadiusPixels(transform.worldSize, transform.center.lat); const circumference = 2.0 * Math.PI * radius; return circumference; } export function globeDistanceOfLocationsPixels(transform: {worldSize: number; center: {lat: number}}, a: LngLat, b: LngLat): number { const vecA = angularCoordinatesToSurfaceVector(a); const vecB = angularCoordinatesToSurfaceVector(b); const dot = vec3.dot(vecA, vecB); const radians = Math.acos(dot); const circumference = getGlobeCircumferencePixels(transform); return radians / (2.0 * Math.PI) * circumference; } /** * For given mercator coordinates in range 0..1, returns the angular coordinates on the sphere's surface, in radians. */ export function mercatorCoordinatesToAngularCoordinatesRadians(mercatorX: number, mercatorY: number): [number, number] { const sphericalX = mod(mercatorX * Math.PI * 2.0 + Math.PI, Math.PI * 2); const sphericalY = 2.0 * Math.atan(Math.exp(Math.PI - (mercatorY * Math.PI * 2.0))) - Math.PI * 0.5; return [sphericalX, sphericalY]; } /** * For a given longitude and latitude (note: in radians) returns the normalized vector from the planet center to the specified place on the surface. * @param lngRadians - Longitude in radians. * @param latRadians - Latitude in radians. */ export function angularCoordinatesRadiansToVector(lngRadians: number, latRadians: number): vec3 { const len = Math.cos(latRadians); const vec = new Float64Array(3) as any; vec[0] = Math.sin(lngRadians) * len; vec[1] = Math.sin(latRadians); vec[2] = Math.cos(lngRadians) * len; return vec; } /** * Projects a point within a tile to the surface of the unit sphere globe. * @param inTileX - X coordinate inside the tile in range [0 .. 8192]. * @param inTileY - Y coordinate inside the tile in range [0 .. 8192]. * @param tileIdX - Tile's X coordinate in range [0 .. 2^zoom - 1]. * @param tileIdY - Tile's Y coordinate in range [0 .. 2^zoom - 1]. * @param tileIdZ - Tile's zoom. * @returns A 3D vector - coordinates of the projected point on a unit sphere. */ export function projectTileCoordinatesToSphere(inTileX: number, inTileY: number, tileIdX: number, tileIdY: number, tileIdZ: number): vec3 { // This code could be assembled from 3 functions, but this is a hot path for symbol placement, // so for optimization purposes everything is inlined by hand. // // Non-inlined variant of this function would be this: // const mercator = tileCoordinatesToMercatorCoordinates(inTileX, inTileY, tileID); // const angular = mercatorCoordinatesToAngularCoordinatesRadians(mercator.x, mercator.y); // const sphere = angularCoordinatesRadiansToVector(angular[0], angular[1]); // return sphere; const scale = 1.0 / (1 << tileIdZ); const mercatorX = inTileX / EXTENT * scale + tileIdX * scale; const mercatorY = inTileY / EXTENT * scale + tileIdY * scale; const sphericalX = mod(mercatorX * Math.PI * 2.0 + Math.PI, Math.PI * 2); const sphericalY = 2.0 * Math.atan(Math.exp(Math.PI - (mercatorY * Math.PI * 2.0))) - Math.PI * 0.5; const len = Math.cos(sphericalY); const vec = new Float64Array(3) as any; vec[0] = Math.sin(sphericalX) * len; vec[1] = Math.sin(sphericalY); vec[2] = Math.cos(sphericalX) * len; return vec; } /** * For a given longitude and latitude (note: in degrees) returns the normalized vector from the planet center to the specified place on the surface. */ export function angularCoordinatesToSurfaceVector(lngLat: LngLat): vec3 { return angularCoordinatesRadiansToVector(lngLat.lng * Math.PI / 180, lngLat.lat * Math.PI / 180); } export function getGlobeRadiusPixels(worldSize: number, latitudeDegrees: number) { // We want zoom levels to be consistent between globe and flat views. // This means that the pixel size of features at the map center point // should be the same for both globe and flat view. // For this reason we scale the globe up when map center is nearer to the poles. return worldSize / (2.0 * Math.PI) / Math.cos(latitudeDegrees * Math.PI / 180); } /** * Given a 3D point on the surface of a unit sphere, returns its angular coordinates in degrees. * The input vector must be normalized. */ export function sphereSurfacePointToCoordinates(surface: vec3): LngLat { const latRadians = Math.asin(surface[1]); const latDegrees = latRadians / Math.PI * 180.0; const lengthXZ = Math.sqrt(surface[0] * surface[0] + surface[2] * surface[2]); if (lengthXZ > 1e-6) { const projX = surface[0] / lengthXZ; const projZ = surface[2] / lengthXZ; const acosZ = Math.acos(projZ); const lngRadians = (projX > 0) ? acosZ : -acosZ; const lngDegrees = lngRadians / Math.PI * 180.0; return new LngLat(wrap(lngDegrees, -180, 180), latDegrees); } else { return new LngLat(0.0, latDegrees); } } /** * Given a normalized horizon plane in Ax+By+Cz+D=0 format, compute the center and radius of * the circle in that plain that contains the entire visible portion of the unit sphere from horizon * to horizon. * @param horizonPlane - The plane that passes through visible horizon in Ax + By + Cz + D = 0 format where mag(A,B,C)=1 * @returns the center point and radius of the disc that passes through the entire visible horizon */ export function horizonPlaneToCenterAndRadius(horizonPlane: ReadonlyVec4): { center: vec3; radius: number } { const center = createVec3f64(); center[0] = horizonPlane[0] * -horizonPlane[3]; center[1] = horizonPlane[1] * -horizonPlane[3]; center[2] = horizonPlane[2] * -horizonPlane[3]; /* .******* ****|\ ** | \ ** | 1 * radius | \ * | \ * center +--D--+(0,0,0) */ const radius = Math.sqrt(1 - horizonPlane[3] * horizonPlane[3]); return {center, radius}; } /** * Computes the closest point on a sphere to `point`. * @param center - Center of the sphere * @param radius - Radius of the sphere * @param point - Point inside or outside the sphere * @returns A 3d vector of the point on the sphere closest to `point` */ export function clampToSphere(center: vec3, radius: number, point: vec3) { const relativeToCenter = createVec3f64(); vec3.sub(relativeToCenter, point, center); const clamped = createVec3f64(); vec3.scaleAndAdd(clamped, center, relativeToCenter, radius / vec3.len(relativeToCenter)); return clamped; } function planetScaleAtLatitude(latitudeDegrees: number): number { return Math.cos(latitudeDegrees * Math.PI / 180); } /** * Computes how much to modify zoom to keep the globe size constant when changing latitude. * @param transform - An instance of any transform. Does not have any relation on the computed values. * @param oldLat - Latitude before change, in degrees. * @param newLat - Latitude after change, in degrees. * @returns A value to add to zoom level used for old latitude to keep same planet radius at new latitude. */ export function getZoomAdjustment(oldLat: number, newLat: number): number { const oldCircumference = planetScaleAtLatitude(oldLat); const newCircumference = planetScaleAtLatitude(newLat); return scaleZoom(newCircumference / oldCircumference); } export function getDegreesPerPixel(worldSize: number, lat: number): number { return 360.0 / getGlobeCircumferencePixels({worldSize, center: {lat}}); } /** * Returns transform's new center rotation after applying panning. * @param panDelta - Panning delta, in same units as what is supplied to {@link HandlerManager}. * @param tr - Current transform. This object is not modified by the function. * @returns New center location to set to the map's transform to apply the specified panning. */ export function computeGlobePanCenter(panDelta: Point, tr: { readonly bearingInRadians: number; readonly worldSize: number; readonly center: LngLat; readonly zoom: number; }): LngLat { // Apply map bearing to the panning vector const rotatedPanDelta = panDelta.rotate(tr.bearingInRadians); // Compute what the current zoom would be if the transform center would be moved to latitude 0. const normalizedGlobeZoom = tr.zoom + getZoomAdjustment(tr.center.lat, 0); // Note: we divide longitude speed by planet width at the given latitude. But we diminish this effect when the globe is zoomed out a lot. const lngSpeed = lerp( 1.0 / planetScaleAtLatitude(tr.center.lat), // speed adjusted by latitude 1.0 / planetScaleAtLatitude(Math.min(Math.abs(tr.center.lat), 60)), // also adjusted, but latitude is clamped to 60° to avoid too large speeds near poles remapSaturate(normalizedGlobeZoom, 7, 3, 0, 1.0) // Values chosen so that globe interactions feel good. Not scientific by any means. ); const panningDegreesPerPixel = getDegreesPerPixel(tr.worldSize, tr.center.lat); return new LngLat( tr.center.lng - rotatedPanDelta.x * panningDegreesPerPixel * lngSpeed, clamp(tr.center.lat + rotatedPanDelta.y * panningDegreesPerPixel, -MAX_VALID_LATITUDE, MAX_VALID_LATITUDE) ); } /** * Integration of `1 / cos(x)`. */ function integrateSecX(x: number): number { const xHalf = 0.5 * x; const sin = Math.sin(xHalf); const cos = Math.cos(xHalf); return Math.log(sin + cos) - Math.log(cos - sin); } /** * Interpolates globe center between two locations while preserving apparent rotation speed during interpolation. * @param start - The starting location of the interpolation. * @param deltaLng - Longitude delta to the end of the interpolation. * @param deltaLat - Latitude delta to the end of the interpolation. * @param t - The interpolation point in [0..1], where 0 is starting location, 1 is end location and other values are in between. * @returns The interpolated location. */ export function interpolateLngLatForGlobe(start: LngLat, deltaLng: number, deltaLat: number, t: number): LngLat { // Rate of change of longitude when moving the globe should be roughly 1/cos(latitude) // We want to use this rate of change, even for interpolation during easing. // Thus we know the derivative of our interpolation function: 1/cos(x) // To get our interpolation function, we need to integrate that. const interpolatedLat = start.lat + deltaLat * t; if (Math.abs(deltaLat) > 1) { const endLat = start.lat + deltaLat; const onDifferentHemispheres = Math.sign(endLat) !== Math.sign(start.lat); // Where do we sample the integrated speed curve? const samplePointStart = (onDifferentHemispheres ? -Math.abs(start.lat) : Math.abs(start.lat)) * Math.PI / 180; const samplePointEnd = Math.abs(start.lat + deltaLat) * Math.PI / 180; // Read the integrated speed curve at those points, and at the interpolation value "t". const valueT = integrateSecX(samplePointStart + t * (samplePointEnd - samplePointStart)); const valueStart = integrateSecX(samplePointStart); const valueEnd = integrateSecX(samplePointEnd); // Compute new interpolation factor based on the speed curve const newT = (valueT - valueStart) / (valueEnd - valueStart); // Interpolate using that factor const interpolatedLng = start.lng + deltaLng * newT; return new LngLat( interpolatedLng, interpolatedLat ); } else { // Fall back to simple interpolation when latitude doesn't change much. const interpolatedLng = start.lng + deltaLng * t; return new LngLat( interpolatedLng, interpolatedLat ); } }