maplibre-gl
Version:
BSD licensed community fork of mapbox-gl, a WebGL interactive maps library
619 lines (535 loc) • 26.7 kB
text/typescript
import Point from '@mapbox/point-geometry';
import {clipLine} from './clip_line';
import {PathInterpolator} from './path_interpolator';
import * as intersectionTests from '../util/intersection_tests';
import {GridIndex} from './grid_index';
import {mat4, vec4} from 'gl-matrix';
import ONE_EM from '../symbol/one_em';
import * as projection from '../symbol/projection';
import type {Transform} from '../geo/transform';
import type {SingleCollisionBox} from '../data/bucket/symbol_bucket';
import type {
GlyphOffsetArray,
SymbolLineVertexArray
} from '../data/array_types.g';
import type {OverlapMode} from '../style/style_layer/overlap_mode';
import {UnwrappedTileID} from '../source/tile_id';
import {SymbolProjectionContext} from '../symbol/projection';
import {Projection} from '../geo/projection/projection';
import {clamp, getAABB} from '../util/util';
// When a symbol crosses the edge that causes it to be included in
// collision detection, it will cause changes in the symbols around
// it. This constant specifies how many pixels to pad the edge of
// the viewport for collision detection so that the bulk of the changes
// occur offscreen. Making this constant greater increases label
// stability, but it's expensive.
export const viewportPadding = 100;
export type PlacedCircles = {
circles: Array<number>;
offscreen: boolean;
collisionDetected: boolean;
};
export type PlacedBox = {
box: Array<number>;
placeable: boolean;
offscreen: boolean;
};
export type FeatureKey = {
bucketInstanceId: number;
featureIndex: number;
collisionGroupID: number;
overlapMode: OverlapMode;
};
type ProjectedBox = {
/**
* The AABB in the format [minX, minY, maxX, maxY].
*/
box: [number, number, number, number];
allPointsOccluded: boolean;
};
/**
* @internal
* A collision index used to prevent symbols from overlapping. It keep tracks of
* where previous symbols have been placed and is used to check if a new
* symbol overlaps with any previously added symbols.
*
* There are two steps to insertion: first placeCollisionBox/Circles checks if
* there's room for a symbol, then insertCollisionBox/Circles actually puts the
* symbol in the index. The two step process allows paired symbols to be inserted
* together even if they overlap.
*/
export class CollisionIndex {
grid: GridIndex<FeatureKey>;
ignoredGrid: GridIndex<FeatureKey>;
transform: Transform;
pitchFactor: number;
screenRightBoundary: number;
screenBottomBoundary: number;
gridRightBoundary: number;
gridBottomBoundary: number;
mapProjection: Projection;
// With perspectiveRatio the fontsize is calculated for tilted maps (near = bigger, far = smaller).
// The cutoff defines a threshold to no longer render labels near the horizon.
perspectiveRatioCutoff: number;
constructor(
transform: Transform,
projection: Projection,
grid = new GridIndex<FeatureKey>(transform.width + 2 * viewportPadding, transform.height + 2 * viewportPadding, 25),
ignoredGrid = new GridIndex<FeatureKey>(transform.width + 2 * viewportPadding, transform.height + 2 * viewportPadding, 25)
) {
this.transform = transform;
this.mapProjection = projection;
this.grid = grid;
this.ignoredGrid = ignoredGrid;
this.pitchFactor = Math.cos(transform._pitch) * transform.cameraToCenterDistance;
this.screenRightBoundary = transform.width + viewportPadding;
this.screenBottomBoundary = transform.height + viewportPadding;
this.gridRightBoundary = transform.width + 2 * viewportPadding;
this.gridBottomBoundary = transform.height + 2 * viewportPadding;
this.perspectiveRatioCutoff = 0.6;
}
placeCollisionBox(
collisionBox: SingleCollisionBox,
overlapMode: OverlapMode,
textPixelRatio: number,
posMatrix: mat4,
unwrappedTileID: UnwrappedTileID,
pitchWithMap: boolean,
rotateWithMap: boolean,
translation: [number, number],
collisionGroupPredicate?: (key: FeatureKey) => boolean,
getElevation?: (x: number, y: number) => number,
shift?: Point
): PlacedBox {
const x = collisionBox.anchorPointX + translation[0];
const y = collisionBox.anchorPointY + translation[1];
const projectedPoint = this.projectAndGetPerspectiveRatio(
posMatrix,
x,
y,
unwrappedTileID,
getElevation
);
const tileToViewport = textPixelRatio * projectedPoint.perspectiveRatio;
let projectedBox: ProjectedBox;
if (!pitchWithMap && !rotateWithMap) {
// Fast path for common symbols
const pointX = projectedPoint.point.x + (shift ? shift.x * tileToViewport : 0);
const pointY = projectedPoint.point.y + (shift ? shift.y * tileToViewport : 0);
projectedBox = {
allPointsOccluded: false,
box: [
pointX + collisionBox.x1 * tileToViewport,
pointY + collisionBox.y1 * tileToViewport,
pointX + collisionBox.x2 * tileToViewport,
pointY + collisionBox.y2 * tileToViewport,
]
};
} else {
projectedBox = this._projectCollisionBox(
collisionBox,
tileToViewport,
posMatrix,
unwrappedTileID,
pitchWithMap,
rotateWithMap,
translation,
projectedPoint,
getElevation,
shift
);
}
const [tlX, tlY, brX, brY] = projectedBox.box;
const projectionOccluded = this.mapProjection.useSpecialProjectionForSymbols ? (pitchWithMap ? projectedBox.allPointsOccluded : this.mapProjection.isOccluded(x, y, unwrappedTileID)) : false;
if (projectionOccluded || projectedPoint.perspectiveRatio < this.perspectiveRatioCutoff || !this.isInsideGrid(tlX, tlY, brX, brY) ||
(overlapMode !== 'always' && this.grid.hitTest(tlX, tlY, brX, brY, overlapMode, collisionGroupPredicate))) {
return {
box: [tlX, tlY, brX, brY],
placeable: false,
offscreen: false
};
}
return {
box: [tlX, tlY, brX, brY],
placeable: true,
offscreen: this.isOffscreen(tlX, tlY, brX, brY)
};
}
placeCollisionCircles(
overlapMode: OverlapMode,
symbol: any,
lineVertexArray: SymbolLineVertexArray,
glyphOffsetArray: GlyphOffsetArray,
fontSize: number,
posMatrix: mat4,
unwrappedTileID: UnwrappedTileID,
labelPlaneMatrix: mat4,
labelToScreenMatrix: mat4,
showCollisionCircles: boolean,
pitchWithMap: boolean,
collisionGroupPredicate: (key: FeatureKey) => boolean,
circlePixelDiameter: number,
textPixelPadding: number,
translation: [number, number],
getElevation: (x: number, y: number) => number
): PlacedCircles {
const placedCollisionCircles = [];
const tileUnitAnchorPoint = new Point(symbol.anchorX, symbol.anchorY);
const perspectiveRatio = this.getPerspectiveRatio(posMatrix, tileUnitAnchorPoint.x, tileUnitAnchorPoint.y, unwrappedTileID, getElevation);
const labelPlaneFontSize = pitchWithMap ? fontSize / perspectiveRatio : fontSize * perspectiveRatio;
const labelPlaneFontScale = labelPlaneFontSize / ONE_EM;
const projectionCache = {projections: {}, offsets: {}, cachedAnchorPoint: undefined, anyProjectionOccluded: false};
const lineOffsetX = symbol.lineOffsetX * labelPlaneFontScale;
const lineOffsetY = symbol.lineOffsetY * labelPlaneFontScale;
const projectionContext: SymbolProjectionContext = {
getElevation,
labelPlaneMatrix,
lineVertexArray,
pitchWithMap,
projectionCache,
projection: this.mapProjection,
tileAnchorPoint: tileUnitAnchorPoint,
unwrappedTileID,
width: this.transform.width,
height: this.transform.height,
translation
};
const firstAndLastGlyph = projection.placeFirstAndLastGlyph(
labelPlaneFontScale,
glyphOffsetArray,
lineOffsetX,
lineOffsetY,
/*flip*/ false,
symbol,
false,
projectionContext);
let collisionDetected = false;
let inGrid = false;
let entirelyOffscreen = true;
if (firstAndLastGlyph) {
const radius = circlePixelDiameter * 0.5 * perspectiveRatio + textPixelPadding;
const screenPlaneMin = new Point(-viewportPadding, -viewportPadding);
const screenPlaneMax = new Point(this.screenRightBoundary, this.screenBottomBoundary);
const interpolator = new PathInterpolator();
// Construct a projected path from projected line vertices. Anchor points are ignored and removed
const first = firstAndLastGlyph.first;
const last = firstAndLastGlyph.last;
let projectedPath: Array<Point> = [];
for (let i = first.path.length - 1; i >= 1; i--) {
projectedPath.push(first.path[i]);
}
for (let i = 1; i < last.path.length; i++) {
projectedPath.push(last.path[i]);
}
// Tolerate a slightly longer distance than one diameter between two adjacent circles
const circleDist = radius * 2.5;
// The path might need to be converted into screen space if a pitched map is used as the label space
if (labelToScreenMatrix) {
const screenSpacePath = this.projectPathToScreenSpace(projectedPath, projectionContext, labelToScreenMatrix);
// Do not try to place collision circles if even one of the points is behind the camera.
// This is a plausible scenario with big camera pitch angles
if (screenSpacePath.some(point => point.signedDistanceFromCamera <= 0)) {
projectedPath = [];
} else {
projectedPath = screenSpacePath.map(p => p.point);
}
}
let segments = [];
if (projectedPath.length > 0) {
// Quickly check if the path is fully inside or outside of the padded collision region.
// For overlapping paths we'll only create collision circles for the visible segments
const minPoint = projectedPath[0].clone();
const maxPoint = projectedPath[0].clone();
for (let i = 1; i < projectedPath.length; i++) {
minPoint.x = Math.min(minPoint.x, projectedPath[i].x);
minPoint.y = Math.min(minPoint.y, projectedPath[i].y);
maxPoint.x = Math.max(maxPoint.x, projectedPath[i].x);
maxPoint.y = Math.max(maxPoint.y, projectedPath[i].y);
}
if (minPoint.x >= screenPlaneMin.x && maxPoint.x <= screenPlaneMax.x &&
minPoint.y >= screenPlaneMin.y && maxPoint.y <= screenPlaneMax.y) {
// Quad fully visible
segments = [projectedPath];
} else if (maxPoint.x < screenPlaneMin.x || minPoint.x > screenPlaneMax.x ||
maxPoint.y < screenPlaneMin.y || minPoint.y > screenPlaneMax.y) {
// Not visible
segments = [];
} else {
segments = clipLine([projectedPath], screenPlaneMin.x, screenPlaneMin.y, screenPlaneMax.x, screenPlaneMax.y);
}
}
for (const seg of segments) {
// interpolate positions for collision circles. Add a small padding to both ends of the segment
interpolator.reset(seg, radius * 0.25);
let numCircles = 0;
if (interpolator.length <= 0.5 * radius) {
numCircles = 1;
} else {
numCircles = Math.ceil(interpolator.paddedLength / circleDist) + 1;
}
for (let i = 0; i < numCircles; i++) {
const t = i / Math.max(numCircles - 1, 1);
const circlePosition = interpolator.lerp(t);
// add viewport padding to the position and perform initial collision check
const centerX = circlePosition.x + viewportPadding;
const centerY = circlePosition.y + viewportPadding;
placedCollisionCircles.push(centerX, centerY, radius, 0);
const x1 = centerX - radius;
const y1 = centerY - radius;
const x2 = centerX + radius;
const y2 = centerY + radius;
entirelyOffscreen = entirelyOffscreen && this.isOffscreen(x1, y1, x2, y2);
inGrid = inGrid || this.isInsideGrid(x1, y1, x2, y2);
if (overlapMode !== 'always' && this.grid.hitTestCircle(centerX, centerY, radius, overlapMode, collisionGroupPredicate)) {
// Don't early exit if we're showing the debug circles because we still want to calculate
// which circles are in use
collisionDetected = true;
if (!showCollisionCircles) {
return {
circles: [],
offscreen: false,
collisionDetected
};
}
}
}
}
}
return {
circles: ((!showCollisionCircles && collisionDetected) || !inGrid || perspectiveRatio < this.perspectiveRatioCutoff) ? [] : placedCollisionCircles,
offscreen: entirelyOffscreen,
collisionDetected
};
}
projectPathToScreenSpace(projectedPath: Array<Point>, projectionContext: SymbolProjectionContext, labelToScreenMatrix: mat4) {
return projectedPath.map(p => projection.project(p.x, p.y, labelToScreenMatrix, projectionContext.getElevation));
}
/**
* Because the geometries in the CollisionIndex are an approximation of the shape of
* symbols on the map, we use the CollisionIndex to look up the symbol part of
* `queryRenderedFeatures`.
*/
queryRenderedSymbols(viewportQueryGeometry: Array<Point>) {
if (viewportQueryGeometry.length === 0 || (this.grid.keysLength() === 0 && this.ignoredGrid.keysLength() === 0)) {
return {};
}
const query = [];
let minX = Infinity;
let minY = Infinity;
let maxX = -Infinity;
let maxY = -Infinity;
for (const point of viewportQueryGeometry) {
const gridPoint = new Point(point.x + viewportPadding, point.y + viewportPadding);
minX = Math.min(minX, gridPoint.x);
minY = Math.min(minY, gridPoint.y);
maxX = Math.max(maxX, gridPoint.x);
maxY = Math.max(maxY, gridPoint.y);
query.push(gridPoint);
}
const features = this.grid.query(minX, minY, maxX, maxY)
.concat(this.ignoredGrid.query(minX, minY, maxX, maxY));
const seenFeatures = {};
const result = {};
for (const feature of features) {
const featureKey = feature.key;
// Skip already seen features.
if (seenFeatures[featureKey.bucketInstanceId] === undefined) {
seenFeatures[featureKey.bucketInstanceId] = {};
}
if (seenFeatures[featureKey.bucketInstanceId][featureKey.featureIndex]) {
continue;
}
// Check if query intersects with the feature box
// "Collision Circles" for line labels are treated as boxes here
// Since there's no actual collision taking place, the circle vs. square
// distinction doesn't matter as much, and box geometry is easier
// to work with.
const bbox = [
new Point(feature.x1, feature.y1),
new Point(feature.x2, feature.y1),
new Point(feature.x2, feature.y2),
new Point(feature.x1, feature.y2)
];
if (!intersectionTests.polygonIntersectsPolygon(query, bbox)) {
continue;
}
seenFeatures[featureKey.bucketInstanceId][featureKey.featureIndex] = true;
if (result[featureKey.bucketInstanceId] === undefined) {
result[featureKey.bucketInstanceId] = [];
}
result[featureKey.bucketInstanceId].push(featureKey.featureIndex);
}
return result;
}
insertCollisionBox(collisionBox: Array<number>, overlapMode: OverlapMode, ignorePlacement: boolean, bucketInstanceId: number, featureIndex: number, collisionGroupID: number) {
const grid = ignorePlacement ? this.ignoredGrid : this.grid;
const key = {bucketInstanceId, featureIndex, collisionGroupID, overlapMode};
grid.insert(key, collisionBox[0], collisionBox[1], collisionBox[2], collisionBox[3]);
}
insertCollisionCircles(collisionCircles: Array<number>, overlapMode: OverlapMode, ignorePlacement: boolean, bucketInstanceId: number, featureIndex: number, collisionGroupID: number) {
const grid = ignorePlacement ? this.ignoredGrid : this.grid;
const key = {bucketInstanceId, featureIndex, collisionGroupID, overlapMode};
for (let k = 0; k < collisionCircles.length; k += 4) {
grid.insertCircle(key, collisionCircles[k], collisionCircles[k + 1], collisionCircles[k + 2]);
}
}
projectAndGetPerspectiveRatio(posMatrix: mat4, x: number, y: number, _unwrappedTileID: UnwrappedTileID, getElevation?: (x: number, y: number) => number) {
// The code here is duplicated from "projection.ts" for performance.
// Code here is subject to change once globe is merged.
let pos;
if (getElevation) { // slow because of handle z-index
pos = [x, y, getElevation(x, y), 1] as vec4;
vec4.transformMat4(pos, pos, posMatrix);
} else { // fast because of ignore z-index
pos = [x, y, 0, 1] as vec4;
projection.xyTransformMat4(pos, pos, posMatrix);
}
const w = pos[3];
return {
point: new Point(
(((pos[0] / w + 1) / 2) * this.transform.width) + viewportPadding,
(((-pos[1] / w + 1) / 2) * this.transform.height) + viewportPadding
),
// See perspective ratio comment in symbol_sdf.vertex
// We're doing collision detection in viewport space so we need
// to scale down boxes in the distance
perspectiveRatio: 0.5 + 0.5 * (this.transform.cameraToCenterDistance / w),
isOccluded: false,
signedDistanceFromCamera: w
};
}
getPerspectiveRatio(posMatrix: mat4, x: number, y: number, unwrappedTileID: UnwrappedTileID, getElevation?: (x: number, y: number) => number): number {
// We don't care about the actual projected point, just its W component.
const projected = this.mapProjection.useSpecialProjectionForSymbols ?
this.mapProjection.projectTileCoordinates(x, y, unwrappedTileID, getElevation) :
projection.project(x, y, posMatrix, getElevation);
return 0.5 + 0.5 * (this.transform.cameraToCenterDistance / projected.signedDistanceFromCamera);
}
isOffscreen(x1: number, y1: number, x2: number, y2: number) {
return x2 < viewportPadding || x1 >= this.screenRightBoundary || y2 < viewportPadding || y1 > this.screenBottomBoundary;
}
isInsideGrid(x1: number, y1: number, x2: number, y2: number) {
return x2 >= 0 && x1 < this.gridRightBoundary && y2 >= 0 && y1 < this.gridBottomBoundary;
}
/*
* Returns a matrix for transforming collision shapes to viewport coordinate space.
* Use this function to render e.g. collision circles on the screen.
* example transformation: clipPos = glCoordMatrix * viewportMatrix * circle_pos
*/
getViewportMatrix() {
const m = mat4.identity([] as any);
mat4.translate(m, m, [-viewportPadding, -viewportPadding, 0.0]);
return m;
}
/**
* Applies all layout+paint properties of the given box in order to find as good approximation of its screen-space bounding box as possible.
*/
private _projectCollisionBox(
collisionBox: SingleCollisionBox,
tileToViewport: number,
posMatrix: mat4,
unwrappedTileID: UnwrappedTileID,
pitchWithMap: boolean,
rotateWithMap: boolean,
translation: [number, number],
projectedPoint: {point: Point; perspectiveRatio: number; signedDistanceFromCamera: number},
getElevation?: (x: number, y: number) => number,
shift?: Point
): ProjectedBox {
// These vectors are valid both for screen space viewport-rotation-aligned texts and for pitch-align: map texts that are map-rotation-aligned.
let vecEast = new Point(1, 0);
let vecSouth = new Point(0, 1);
const translatedAnchor = new Point(collisionBox.anchorPointX + translation[0], collisionBox.anchorPointY + translation[1]);
if (rotateWithMap && !pitchWithMap) {
// Handles screen space texts that are always aligned east-west.
const projectedEast = this.projectAndGetPerspectiveRatio(
posMatrix,
translatedAnchor.x + 1,
translatedAnchor.y,
unwrappedTileID,
getElevation
).point;
const toEast = projectedEast.sub(projectedPoint.point).unit();
const angle = Math.atan(toEast.y / toEast.x) + (toEast.x < 0 ? Math.PI : 0);
const sin = Math.sin(angle);
const cos = Math.cos(angle);
vecEast = new Point(cos, sin);
vecSouth = new Point(-sin, cos);
} else if (!rotateWithMap && pitchWithMap) {
// Handles pitch-align: map texts that are always aligned with the viewport's X axis.
const angle = -this.transform.angle;
const sin = Math.sin(angle);
const cos = Math.cos(angle);
vecEast = new Point(cos, sin);
vecSouth = new Point(-sin, cos);
}
// Configuration for screen space offsets
let basePoint = projectedPoint.point;
let distanceMultiplier = tileToViewport;
if (pitchWithMap) {
// Configuration for tile space (map-pitch-aligned) offsets
basePoint = translatedAnchor;
const zoomFraction = this.transform.zoom - Math.floor(this.transform.zoom);
distanceMultiplier = Math.pow(2, -zoomFraction);
distanceMultiplier *= this.mapProjection.getPitchedTextCorrection(this.transform, translatedAnchor, unwrappedTileID);
// This next correction can't be applied when variable anchors are in use.
if (!shift) {
// Shader applies a perspective size correction, we need to apply the same correction.
// For non-pitchWithMap texts, this is handled above by multiplying `textPixelRatio` with `projectedPoint.perspectiveRatio`,
// which is equivalent to the non-pitchWithMap branch of the GLSL code.
// Here, we compute and apply the pitchWithMap branch.
// See the computation of `perspective_ratio` in the symbol vertex shaders for the GLSL code.
const distanceRatio = projectedPoint.signedDistanceFromCamera / this.transform.cameraToCenterDistance;
const perspectiveRatio = clamp(0.5 + 0.5 * distanceRatio, 0.0, 4.0); // Same clamp as what is used in the shader.
distanceMultiplier *= perspectiveRatio;
}
}
if (shift) {
// Variable anchors are in use
basePoint = basePoint.add(vecEast.mult(shift.x * distanceMultiplier)).add(vecSouth.mult(shift.y * distanceMultiplier));
}
const offsetXmin = collisionBox.x1 * distanceMultiplier;
const offsetXmax = collisionBox.x2 * distanceMultiplier;
const offsetXhalf = (offsetXmin + offsetXmax) / 2;
const offsetYmin = collisionBox.y1 * distanceMultiplier;
const offsetYmax = collisionBox.y2 * distanceMultiplier;
const offsetYhalf = (offsetYmin + offsetYmax) / 2;
// 0--1--2
// | |
// 7 3
// | |
// 6--5--4
const offsetsArray: Array<{offsetX: number; offsetY: number}> = [
{offsetX: offsetXmin, offsetY: offsetYmin},
{offsetX: offsetXhalf, offsetY: offsetYmin},
{offsetX: offsetXmax, offsetY: offsetYmin},
{offsetX: offsetXmax, offsetY: offsetYhalf},
{offsetX: offsetXmax, offsetY: offsetYmax},
{offsetX: offsetXhalf, offsetY: offsetYmax},
{offsetX: offsetXmin, offsetY: offsetYmax},
{offsetX: offsetXmin, offsetY: offsetYhalf}
];
let points: Array<Point> = [];
for (const {offsetX, offsetY} of offsetsArray) {
points.push(new Point(
basePoint.x + vecEast.x * offsetX + vecSouth.x * offsetY,
basePoint.y + vecEast.y * offsetX + vecSouth.y * offsetY
));
}
// Is any point of the collision shape visible on the globe (on beyond horizon)?
let anyPointVisible = false;
if (pitchWithMap) {
const projected = points.map(p => this.projectAndGetPerspectiveRatio(posMatrix, p.x, p.y, unwrappedTileID, getElevation));
// Is at least one of the projected points NOT behind the horizon?
anyPointVisible = projected.some(p => !p.isOccluded);
points = projected.map(p => p.point);
} else {
// Labels that are not pitchWithMap cannot ever hide behind the horizon.
anyPointVisible = true;
}
return {
box: getAABB(points),
allPointsOccluded: !anyPointVisible
};
}
}