UNPKG

mapbox-gl

Version:
1,849 lines (1,837 loc) 3.62 MB
/* Mapbox GL JS is Copyright © 2020 Mapbox and subject to the Mapbox Terms of Service ((https://www.mapbox.com/legal/tos/). */ (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : typeof define === 'function' && define.amd ? define(factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.mapboxgl = factory()); })(this, (function () { 'use strict'; /* eslint-disable */ var shared, worker, mapboxgl; // define gets called three times: one for each chunk. we rely on the order // they're imported to know which is which function define(_, chunk) { if (!shared) { shared = chunk; } else if (!worker) { worker = chunk; } else { var workerBundleString = "self.onerror = function() { console.error('An error occurred while parsing the WebWorker bundle. This is most likely due to improper transpilation by Babel; please see https://docs.mapbox.com/mapbox-gl-js/guides/install/#transpiling'); }; var sharedChunk = {}; (" + shared + ")(sharedChunk); (" + worker + ")(sharedChunk); self.onerror = null;" var sharedChunk = {}; shared(sharedChunk); mapboxgl = chunk(sharedChunk); if (typeof window !== 'undefined' && window && window.URL && window.URL.createObjectURL) { mapboxgl.workerUrl = window.URL.createObjectURL(new Blob([workerBundleString], { type: 'text/javascript' })); } } } define(['exports'], (function (exports) { 'use strict'; /** * Common utilities * @module glMatrix */ // Configuration Constants var EPSILON = 0.000001; var ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array; if (!Math.hypot) Math.hypot = function () { var y = 0, i = arguments.length; while (i--) { y += arguments[i] * arguments[i]; } return Math.sqrt(y); }; /** * 2x2 Matrix * @module mat2 */ /** * Creates a new identity mat2 * * @returns {mat2} a new 2x2 matrix */ function create$6() { var out = new ARRAY_TYPE(4); if (ARRAY_TYPE != Float32Array) { out[1] = 0; out[2] = 0; } out[0] = 1; out[3] = 1; return out; } /** * Inverts a mat2 * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the source matrix * @returns {mat2} out */ function invert$2(out, a) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; // Calculate the determinant var det = a0 * a3 - a2 * a1; if (!det) { return null; } det = 1 / det; out[0] = a3 * det; out[1] = -a1 * det; out[2] = -a2 * det; out[3] = a0 * det; return out; } /** * Rotates a mat2 by the given angle * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat2} out */ function rotate$1(out, a, rad) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var s = Math.sin(rad); var c = Math.cos(rad); out[0] = a0 * c + a2 * s; out[1] = a1 * c + a3 * s; out[2] = a0 * -s + a2 * c; out[3] = a1 * -s + a3 * c; return out; } /** * Scales the mat2 by the dimensions in the given vec2 * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the matrix to rotate * @param {ReadonlyVec2} v the vec2 to scale the matrix by * @returns {mat2} out **/ function scale$4(out, a, v) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var v0 = v[0], v1 = v[1]; out[0] = a0 * v0; out[1] = a1 * v0; out[2] = a2 * v1; out[3] = a3 * v1; return out; } /** * 3x3 Matrix * @module mat3 */ /** * Creates a new identity mat3 * * @returns {mat3} a new 3x3 matrix */ function create$5() { var out = new ARRAY_TYPE(9); if (ARRAY_TYPE != Float32Array) { out[1] = 0; out[2] = 0; out[3] = 0; out[5] = 0; out[6] = 0; out[7] = 0; } out[0] = 1; out[4] = 1; out[8] = 1; return out; } /** * Copies the upper-left 3x3 values into the given mat3. * * @param {mat3} out the receiving 3x3 matrix * @param {ReadonlyMat4} a the source 4x4 matrix * @returns {mat3} out */ function fromMat4(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[4]; out[4] = a[5]; out[5] = a[6]; out[6] = a[8]; out[7] = a[9]; out[8] = a[10]; return out; } /** * Inverts a mat3 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the source matrix * @returns {mat3} out */ function invert$1(out, a) { var a00 = a[0], a01 = a[1], a02 = a[2]; var a10 = a[3], a11 = a[4], a12 = a[5]; var a20 = a[6], a21 = a[7], a22 = a[8]; var b01 = a22 * a11 - a12 * a21; var b11 = -a22 * a10 + a12 * a20; var b21 = a21 * a10 - a11 * a20; // Calculate the determinant var det = a00 * b01 + a01 * b11 + a02 * b21; if (!det) { return null; } det = 1 / det; out[0] = b01 * det; out[1] = (-a22 * a01 + a02 * a21) * det; out[2] = (a12 * a01 - a02 * a11) * det; out[3] = b11 * det; out[4] = (a22 * a00 - a02 * a20) * det; out[5] = (-a12 * a00 + a02 * a10) * det; out[6] = b21 * det; out[7] = (-a21 * a00 + a01 * a20) * det; out[8] = (a11 * a00 - a01 * a10) * det; return out; } /** * Calculates the adjugate of a mat3 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the source matrix * @returns {mat3} out */ function adjoint(out, a) { var a00 = a[0], a01 = a[1], a02 = a[2]; var a10 = a[3], a11 = a[4], a12 = a[5]; var a20 = a[6], a21 = a[7], a22 = a[8]; out[0] = a11 * a22 - a12 * a21; out[1] = a02 * a21 - a01 * a22; out[2] = a01 * a12 - a02 * a11; out[3] = a12 * a20 - a10 * a22; out[4] = a00 * a22 - a02 * a20; out[5] = a02 * a10 - a00 * a12; out[6] = a10 * a21 - a11 * a20; out[7] = a01 * a20 - a00 * a21; out[8] = a00 * a11 - a01 * a10; return out; } /** * Multiplies two mat3's * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the first operand * @param {ReadonlyMat3} b the second operand * @returns {mat3} out */ function multiply$3(out, a, b) { var a00 = a[0], a01 = a[1], a02 = a[2]; var a10 = a[3], a11 = a[4], a12 = a[5]; var a20 = a[6], a21 = a[7], a22 = a[8]; var b00 = b[0], b01 = b[1], b02 = b[2]; var b10 = b[3], b11 = b[4], b12 = b[5]; var b20 = b[6], b21 = b[7], b22 = b[8]; out[0] = b00 * a00 + b01 * a10 + b02 * a20; out[1] = b00 * a01 + b01 * a11 + b02 * a21; out[2] = b00 * a02 + b01 * a12 + b02 * a22; out[3] = b10 * a00 + b11 * a10 + b12 * a20; out[4] = b10 * a01 + b11 * a11 + b12 * a21; out[5] = b10 * a02 + b11 * a12 + b12 * a22; out[6] = b20 * a00 + b21 * a10 + b22 * a20; out[7] = b20 * a01 + b21 * a11 + b22 * a21; out[8] = b20 * a02 + b21 * a12 + b22 * a22; return out; } /** * Creates a matrix from a given angle * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.rotate(dest, dest, rad); * * @param {mat3} out mat3 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat3} out */ function fromRotation$1(out, rad) { var s = Math.sin(rad), c = Math.cos(rad); out[0] = c; out[1] = s; out[2] = 0; out[3] = -s; out[4] = c; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * 4x4 Matrix<br>Format: column-major, when typed out it looks like row-major<br>The matrices are being post multiplied. * @module mat4 */ /** * Creates a new identity mat4 * * @returns {mat4} a new 4x4 matrix */ function create$4() { var out = new ARRAY_TYPE(16); if (ARRAY_TYPE != Float32Array) { out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; } out[0] = 1; out[5] = 1; out[10] = 1; out[15] = 1; return out; } /** * Creates a new mat4 initialized with values from an existing matrix * * @param {ReadonlyMat4} a matrix to clone * @returns {mat4} a new 4x4 matrix */ function clone$2(a) { var out = new ARRAY_TYPE(16); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } /** * Create a new mat4 with the given values * * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m03 Component in column 0, row 3 position (index 3) * @param {Number} m10 Component in column 1, row 0 position (index 4) * @param {Number} m11 Component in column 1, row 1 position (index 5) * @param {Number} m12 Component in column 1, row 2 position (index 6) * @param {Number} m13 Component in column 1, row 3 position (index 7) * @param {Number} m20 Component in column 2, row 0 position (index 8) * @param {Number} m21 Component in column 2, row 1 position (index 9) * @param {Number} m22 Component in column 2, row 2 position (index 10) * @param {Number} m23 Component in column 2, row 3 position (index 11) * @param {Number} m30 Component in column 3, row 0 position (index 12) * @param {Number} m31 Component in column 3, row 1 position (index 13) * @param {Number} m32 Component in column 3, row 2 position (index 14) * @param {Number} m33 Component in column 3, row 3 position (index 15) * @returns {mat4} A new mat4 */ function fromValues$3(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { var out = new ARRAY_TYPE(16); out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m03; out[4] = m10; out[5] = m11; out[6] = m12; out[7] = m13; out[8] = m20; out[9] = m21; out[10] = m22; out[11] = m23; out[12] = m30; out[13] = m31; out[14] = m32; out[15] = m33; return out; } /** * Set a mat4 to the identity matrix * * @param {mat4} out the receiving matrix * @returns {mat4} out */ function identity$2(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Transpose the values of a mat4 * * @param {mat4} out the receiving matrix * @param {ReadonlyMat4} a the source matrix * @returns {mat4} out */ function transpose(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { var a01 = a[1], a02 = a[2], a03 = a[3]; var a12 = a[6], a13 = a[7]; var a23 = a[11]; out[1] = a[4]; out[2] = a[8]; out[3] = a[12]; out[4] = a01; out[6] = a[9]; out[7] = a[13]; out[8] = a02; out[9] = a12; out[11] = a[14]; out[12] = a03; out[13] = a13; out[14] = a23; } else { out[0] = a[0]; out[1] = a[4]; out[2] = a[8]; out[3] = a[12]; out[4] = a[1]; out[5] = a[5]; out[6] = a[9]; out[7] = a[13]; out[8] = a[2]; out[9] = a[6]; out[10] = a[10]; out[11] = a[14]; out[12] = a[3]; out[13] = a[7]; out[14] = a[11]; out[15] = a[15]; } return out; } /** * Inverts a mat4 * * @param {mat4} out the receiving matrix * @param {ReadonlyMat4} a the source matrix * @returns {mat4} out */ function invert(out, a) { var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; var a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; var a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; var a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; var b00 = a00 * a11 - a01 * a10; var b01 = a00 * a12 - a02 * a10; var b02 = a00 * a13 - a03 * a10; var b03 = a01 * a12 - a02 * a11; var b04 = a01 * a13 - a03 * a11; var b05 = a02 * a13 - a03 * a12; var b06 = a20 * a31 - a21 * a30; var b07 = a20 * a32 - a22 * a30; var b08 = a20 * a33 - a23 * a30; var b09 = a21 * a32 - a22 * a31; var b10 = a21 * a33 - a23 * a31; var b11 = a22 * a33 - a23 * a32; // Calculate the determinant var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; if (!det) { return null; } det = 1 / det; out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det; out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det; out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det; out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det; out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det; out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det; out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det; out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det; out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det; out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det; out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det; out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det; out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det; out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det; out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det; return out; } /** * Multiplies two mat4s * * @param {mat4} out the receiving matrix * @param {ReadonlyMat4} a the first operand * @param {ReadonlyMat4} b the second operand * @returns {mat4} out */ function multiply$2(out, a, b) { var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; var a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; var a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; var a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; // Cache only the current line of the second matrix var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7]; out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11]; out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15]; out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; return out; } /** * Translate a mat4 by the given vector * * @param {mat4} out the receiving matrix * @param {ReadonlyMat4} a the matrix to translate * @param {ReadonlyVec3} v vector to translate by * @returns {mat4} out */ function translate$1(out, a, v) { var x = v[0], y = v[1], z = v[2]; var a00, a01, a02, a03; var a10, a11, a12, a13; var a20, a21, a22, a23; if (a === out) { out[12] = a[0] * x + a[4] * y + a[8] * z + a[12]; out[13] = a[1] * x + a[5] * y + a[9] * z + a[13]; out[14] = a[2] * x + a[6] * y + a[10] * z + a[14]; out[15] = a[3] * x + a[7] * y + a[11] * z + a[15]; } else { a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3]; a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7]; a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11]; out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03; out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13; out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23; out[12] = a00 * x + a10 * y + a20 * z + a[12]; out[13] = a01 * x + a11 * y + a21 * z + a[13]; out[14] = a02 * x + a12 * y + a22 * z + a[14]; out[15] = a03 * x + a13 * y + a23 * z + a[15]; } return out; } /** * Scales the mat4 by the dimensions in the given vec3 not using vectorization * * @param {mat4} out the receiving matrix * @param {ReadonlyMat4} a the matrix to scale * @param {ReadonlyVec3} v the vec3 to scale the matrix by * @returns {mat4} out **/ function scale$3(out, a, v) { var x = v[0], y = v[1], z = v[2]; out[0] = a[0] * x; out[1] = a[1] * x; out[2] = a[2] * x; out[3] = a[3] * x; out[4] = a[4] * y; out[5] = a[5] * y; out[6] = a[6] * y; out[7] = a[7] * y; out[8] = a[8] * z; out[9] = a[9] * z; out[10] = a[10] * z; out[11] = a[11] * z; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } /** * Rotates a matrix by the given angle around the X axis * * @param {mat4} out the receiving matrix * @param {ReadonlyMat4} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ function rotateX$1(out, a, rad) { var s = Math.sin(rad); var c = Math.cos(rad); var a10 = a[4]; var a11 = a[5]; var a12 = a[6]; var a13 = a[7]; var a20 = a[8]; var a21 = a[9]; var a22 = a[10]; var a23 = a[11]; if (a !== out) { // If the source and destination differ, copy the unchanged rows out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } // Perform axis-specific matrix multiplication out[4] = a10 * c + a20 * s; out[5] = a11 * c + a21 * s; out[6] = a12 * c + a22 * s; out[7] = a13 * c + a23 * s; out[8] = a20 * c - a10 * s; out[9] = a21 * c - a11 * s; out[10] = a22 * c - a12 * s; out[11] = a23 * c - a13 * s; return out; } /** * Rotates a matrix by the given angle around the Y axis * * @param {mat4} out the receiving matrix * @param {ReadonlyMat4} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ function rotateY$1(out, a, rad) { var s = Math.sin(rad); var c = Math.cos(rad); var a00 = a[0]; var a01 = a[1]; var a02 = a[2]; var a03 = a[3]; var a20 = a[8]; var a21 = a[9]; var a22 = a[10]; var a23 = a[11]; if (a !== out) { // If the source and destination differ, copy the unchanged rows out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } // Perform axis-specific matrix multiplication out[0] = a00 * c - a20 * s; out[1] = a01 * c - a21 * s; out[2] = a02 * c - a22 * s; out[3] = a03 * c - a23 * s; out[8] = a00 * s + a20 * c; out[9] = a01 * s + a21 * c; out[10] = a02 * s + a22 * c; out[11] = a03 * s + a23 * c; return out; } /** * Rotates a matrix by the given angle around the Z axis * * @param {mat4} out the receiving matrix * @param {ReadonlyMat4} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ function rotateZ$1(out, a, rad) { var s = Math.sin(rad); var c = Math.cos(rad); var a00 = a[0]; var a01 = a[1]; var a02 = a[2]; var a03 = a[3]; var a10 = a[4]; var a11 = a[5]; var a12 = a[6]; var a13 = a[7]; if (a !== out) { // If the source and destination differ, copy the unchanged last row out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } // Perform axis-specific matrix multiplication out[0] = a00 * c + a10 * s; out[1] = a01 * c + a11 * s; out[2] = a02 * c + a12 * s; out[3] = a03 * c + a13 * s; out[4] = a10 * c - a00 * s; out[5] = a11 * c - a01 * s; out[6] = a12 * c - a02 * s; out[7] = a13 * c - a03 * s; return out; } /** * Creates a matrix from a vector translation * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.translate(dest, dest, vec); * * @param {mat4} out mat4 receiving operation result * @param {ReadonlyVec3} v Translation vector * @returns {mat4} out */ function fromTranslation(out, v) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; out[15] = 1; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.scale(dest, dest, vec); * * @param {mat4} out mat4 receiving operation result * @param {ReadonlyVec3} v Scaling vector * @returns {mat4} out */ function fromScaling(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = v[1]; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = v[2]; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Creates a matrix from a given angle around a given axis * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.rotate(dest, dest, rad, axis); * * @param {mat4} out mat4 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @param {ReadonlyVec3} axis the axis to rotate around * @returns {mat4} out */ function fromRotation(out, rad, axis) { var x = axis[0], y = axis[1], z = axis[2]; var len = Math.hypot(x, y, z); var s, c, t; if (len < EPSILON) { return null; } len = 1 / len; x *= len; y *= len; z *= len; s = Math.sin(rad); c = Math.cos(rad); t = 1 - c; // Perform rotation-specific matrix multiplication out[0] = x * x * t + c; out[1] = y * x * t + z * s; out[2] = z * x * t - y * s; out[3] = 0; out[4] = x * y * t - z * s; out[5] = y * y * t + c; out[6] = z * y * t + x * s; out[7] = 0; out[8] = x * z * t + y * s; out[9] = y * z * t - x * s; out[10] = z * z * t + c; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Creates a matrix from a quaternion rotation, vector translation and vector scale * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.translate(dest, vec); * let quatMat = mat4.create(); * quat4.toMat4(quat, quatMat); * mat4.multiply(dest, quatMat); * mat4.scale(dest, scale) * * @param {mat4} out mat4 receiving operation result * @param {quat4} q Rotation quaternion * @param {ReadonlyVec3} v Translation vector * @param {ReadonlyVec3} s Scaling vector * @returns {mat4} out */ function fromRotationTranslationScale(out, q, v, s) { // Quaternion math var x = q[0], y = q[1], z = q[2], w = q[3]; var x2 = x + x; var y2 = y + y; var z2 = z + z; var xx = x * x2; var xy = x * y2; var xz = x * z2; var yy = y * y2; var yz = y * z2; var zz = z * z2; var wx = w * x2; var wy = w * y2; var wz = w * z2; var sx = s[0]; var sy = s[1]; var sz = s[2]; out[0] = (1 - (yy + zz)) * sx; out[1] = (xy + wz) * sx; out[2] = (xz - wy) * sx; out[3] = 0; out[4] = (xy - wz) * sy; out[5] = (1 - (xx + zz)) * sy; out[6] = (yz + wx) * sy; out[7] = 0; out[8] = (xz + wy) * sz; out[9] = (yz - wx) * sz; out[10] = (1 - (xx + yy)) * sz; out[11] = 0; out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; out[15] = 1; return out; } /** * Calculates a 4x4 matrix from the given quaternion * * @param {mat4} out mat4 receiving operation result * @param {ReadonlyQuat} q Quaternion to create matrix from * * @returns {mat4} out */ function fromQuat(out, q) { var x = q[0], y = q[1], z = q[2], w = q[3]; var x2 = x + x; var y2 = y + y; var z2 = z + z; var xx = x * x2; var yx = y * x2; var yy = y * y2; var zx = z * x2; var zy = z * y2; var zz = z * z2; var wx = w * x2; var wy = w * y2; var wz = w * z2; out[0] = 1 - yy - zz; out[1] = yx + wz; out[2] = zx - wy; out[3] = 0; out[4] = yx - wz; out[5] = 1 - xx - zz; out[6] = zy + wx; out[7] = 0; out[8] = zx + wy; out[9] = zy - wx; out[10] = 1 - xx - yy; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Generates a perspective projection matrix with the given bounds. * The near/far clip planes correspond to a normalized device coordinate Z range of [-1, 1], * which matches WebGL/OpenGL's clip volume. * Passing null/undefined/no value for far will generate infinite projection matrix. * * @param {mat4} out mat4 frustum matrix will be written into * @param {number} fovy Vertical field of view in radians * @param {number} aspect Aspect ratio. typically viewport width/height * @param {number} near Near bound of the frustum * @param {number} far Far bound of the frustum, can be null or Infinity * @returns {mat4} out */ function perspectiveNO(out, fovy, aspect, near, far) { var f = 1 / Math.tan(fovy / 2), nf; out[0] = f / aspect; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = f; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[11] = -1; out[12] = 0; out[13] = 0; out[15] = 0; if (far != null && far !== Infinity) { nf = 1 / (near - far); out[10] = (far + near) * nf; out[14] = 2 * far * near * nf; } else { out[10] = -1; out[14] = -2 * near; } return out; } /** * Alias for {@link mat4.perspectiveNO} * @function */ var perspective = perspectiveNO; /** * Generates a orthogonal projection matrix with the given bounds. * The near/far clip planes correspond to a normalized device coordinate Z range of [-1, 1], * which matches WebGL/OpenGL's clip volume. * * @param {mat4} out mat4 frustum matrix will be written into * @param {number} left Left bound of the frustum * @param {number} right Right bound of the frustum * @param {number} bottom Bottom bound of the frustum * @param {number} top Top bound of the frustum * @param {number} near Near bound of the frustum * @param {number} far Far bound of the frustum * @returns {mat4} out */ function orthoNO(out, left, right, bottom, top, near, far) { var lr = 1 / (left - right); var bt = 1 / (bottom - top); var nf = 1 / (near - far); out[0] = -2 * lr; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = -2 * bt; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 2 * nf; out[11] = 0; out[12] = (left + right) * lr; out[13] = (top + bottom) * bt; out[14] = (far + near) * nf; out[15] = 1; return out; } /** * Alias for {@link mat4.orthoNO} * @function */ var ortho = orthoNO; /** * Alias for {@link mat4.multiply} * @function */ var mul$2 = multiply$2; /** * 3 Dimensional Vector * @module vec3 */ /** * Creates a new, empty vec3 * * @returns {vec3} a new 3D vector */ function create$3() { var out = new ARRAY_TYPE(3); if (ARRAY_TYPE != Float32Array) { out[0] = 0; out[1] = 0; out[2] = 0; } return out; } /** * Creates a new vec3 initialized with values from an existing vector * * @param {ReadonlyVec3} a vector to clone * @returns {vec3} a new 3D vector */ function clone$1(a) { var out = new ARRAY_TYPE(3); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; return out; } /** * Calculates the length of a vec3 * * @param {ReadonlyVec3} a vector to calculate length of * @returns {Number} length of a */ function length$3(a) { var x = a[0]; var y = a[1]; var z = a[2]; return Math.hypot(x, y, z); } /** * Creates a new vec3 initialized with the given values * * @param {Number} x X component * @param {Number} y Y component * @param {Number} z Z component * @returns {vec3} a new 3D vector */ function fromValues$2(x, y, z) { var out = new ARRAY_TYPE(3); out[0] = x; out[1] = y; out[2] = z; return out; } /** * Set the components of a vec3 to the given values * * @param {vec3} out the receiving vector * @param {Number} x X component * @param {Number} y Y component * @param {Number} z Z component * @returns {vec3} out */ function set(out, x, y, z) { out[0] = x; out[1] = y; out[2] = z; return out; } /** * Adds two vec3's * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @returns {vec3} out */ function add$1(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; return out; } /** * Subtracts vector b from vector a * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @returns {vec3} out */ function subtract$1(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; return out; } /** * Multiplies two vec3's * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @returns {vec3} out */ function multiply$1(out, a, b) { out[0] = a[0] * b[0]; out[1] = a[1] * b[1]; out[2] = a[2] * b[2]; return out; } /** * Divides two vec3's * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @returns {vec3} out */ function divide(out, a, b) { out[0] = a[0] / b[0]; out[1] = a[1] / b[1]; out[2] = a[2] / b[2]; return out; } /** * Returns the minimum of two vec3's * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @returns {vec3} out */ function min$1(out, a, b) { out[0] = Math.min(a[0], b[0]); out[1] = Math.min(a[1], b[1]); out[2] = Math.min(a[2], b[2]); return out; } /** * Returns the maximum of two vec3's * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @returns {vec3} out */ function max$2(out, a, b) { out[0] = Math.max(a[0], b[0]); out[1] = Math.max(a[1], b[1]); out[2] = Math.max(a[2], b[2]); return out; } /** * Scales a vec3 by a scalar number * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the vector to scale * @param {Number} b amount to scale the vector by * @returns {vec3} out */ function scale$2(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; return out; } /** * Adds two vec3's after scaling the second operand by a scalar value * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @param {Number} scale the amount to scale b by before adding * @returns {vec3} out */ function scaleAndAdd(out, a, b, scale) { out[0] = a[0] + b[0] * scale; out[1] = a[1] + b[1] * scale; out[2] = a[2] + b[2] * scale; return out; } /** * Calculates the euclidian distance between two vec3's * * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @returns {Number} distance between a and b */ function distance(a, b) { var x = b[0] - a[0]; var y = b[1] - a[1]; var z = b[2] - a[2]; return Math.hypot(x, y, z); } /** * Calculates the squared euclidian distance between two vec3's * * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @returns {Number} squared distance between a and b */ function squaredDistance(a, b) { var x = b[0] - a[0]; var y = b[1] - a[1]; var z = b[2] - a[2]; return x * x + y * y + z * z; } /** * Calculates the squared length of a vec3 * * @param {ReadonlyVec3} a vector to calculate squared length of * @returns {Number} squared length of a */ function squaredLength(a) { var x = a[0]; var y = a[1]; var z = a[2]; return x * x + y * y + z * z; } /** * Negates the components of a vec3 * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a vector to negate * @returns {vec3} out */ function negate(out, a) { out[0] = -a[0]; out[1] = -a[1]; out[2] = -a[2]; return out; } /** * Normalize a vec3 * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a vector to normalize * @returns {vec3} out */ function normalize$3(out, a) { var x = a[0]; var y = a[1]; var z = a[2]; var len = x * x + y * y + z * z; if (len > 0) { //TODO: evaluate use of glm_invsqrt here? len = 1 / Math.sqrt(len); } out[0] = a[0] * len; out[1] = a[1] * len; out[2] = a[2] * len; return out; } /** * Calculates the dot product of two vec3's * * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @returns {Number} dot product of a and b */ function dot$3(a, b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; } /** * Computes the cross product of two vec3's * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @returns {vec3} out */ function cross(out, a, b) { var ax = a[0], ay = a[1], az = a[2]; var bx = b[0], by = b[1], bz = b[2]; out[0] = ay * bz - az * by; out[1] = az * bx - ax * bz; out[2] = ax * by - ay * bx; return out; } /** * Performs a linear interpolation between two vec3's * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the first operand * @param {ReadonlyVec3} b the second operand * @param {Number} t interpolation amount, in the range [0-1], between the two inputs * @returns {vec3} out */ function lerp$2(out, a, b, t) { var ax = a[0]; var ay = a[1]; var az = a[2]; out[0] = ax + t * (b[0] - ax); out[1] = ay + t * (b[1] - ay); out[2] = az + t * (b[2] - az); return out; } /** * Transforms the vec3 with a mat4. * 4th vector component is implicitly '1' * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the vector to transform * @param {ReadonlyMat4} m matrix to transform with * @returns {vec3} out */ function transformMat4$1(out, a, m) { var x = a[0], y = a[1], z = a[2]; var w = m[3] * x + m[7] * y + m[11] * z + m[15]; w = w || 1; out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w; out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w; out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w; return out; } /** * Transforms the vec3 with a mat3. * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the vector to transform * @param {ReadonlyMat3} m the 3x3 matrix to transform with * @returns {vec3} out */ function transformMat3(out, a, m) { var x = a[0], y = a[1], z = a[2]; out[0] = x * m[0] + y * m[3] + z * m[6]; out[1] = x * m[1] + y * m[4] + z * m[7]; out[2] = x * m[2] + y * m[5] + z * m[8]; return out; } /** * Transforms the vec3 with a quat * Can also be used for dual quaternions. (Multiply it with the real part) * * @param {vec3} out the receiving vector * @param {ReadonlyVec3} a the vector to transform * @param {ReadonlyQuat} q quaternion to transform with * @returns {vec3} out */ function transformQuat(out, a, q) { // benchmarks: https://jsperf.com/quaternion-transform-vec3-implementations-fixed var qx = q[0], qy = q[1], qz = q[2], qw = q[3]; var x = a[0], y = a[1], z = a[2]; // var qvec = [qx, qy, qz]; // var uv = vec3.cross([], qvec, a); var uvx = qy * z - qz * y, uvy = qz * x - qx * z, uvz = qx * y - qy * x; // var uuv = vec3.cross([], qvec, uv); var uuvx = qy * uvz - qz * uvy, uuvy = qz * uvx - qx * uvz, uuvz = qx * uvy - qy * uvx; // vec3.scale(uv, uv, 2 * w); var w2 = qw * 2; uvx *= w2; uvy *= w2; uvz *= w2; // vec3.scale(uuv, uuv, 2); uuvx *= 2; uuvy *= 2; uuvz *= 2; // return vec3.add(out, a, vec3.add(out, uv, uuv)); out[0] = x + uvx + uuvx; out[1] = y + uvy + uuvy; out[2] = z + uvz + uuvz; return out; } /** * Get the angle between two 3D vectors * @param {ReadonlyVec3} a The first operand * @param {ReadonlyVec3} b The second operand * @returns {Number} The angle in radians */ function angle(a, b) { var ax = a[0], ay = a[1], az = a[2], bx = b[0], by = b[1], bz = b[2], mag1 = Math.sqrt(ax * ax + ay * ay + az * az), mag2 = Math.sqrt(bx * bx + by * by + bz * bz), mag = mag1 * mag2, cosine = mag && dot$3(a, b) / mag; return Math.acos(Math.min(Math.max(cosine, -1), 1)); } /** * Set the components of a vec3 to zero * * @param {vec3} out the receiving vector * @returns {vec3} out */ function zero(out) { out[0] = 0; out[1] = 0; out[2] = 0; return out; } /** * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===) * * @param {ReadonlyVec3} a The first vector. * @param {ReadonlyVec3} b The second vector. * @returns {Boolean} True if the vectors are equal, false otherwise. */ function exactEquals$3(a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2]; } /** * Returns whether or not the vectors have approximately the same elements in the same position. * * @param {ReadonlyVec3} a The first vector. * @param {ReadonlyVec3} b The second vector. * @returns {Boolean} True if the vectors are equal, false otherwise. */ function equals$2(a, b) { var a0 = a[0], a1 = a[1], a2 = a[2]; var b0 = b[0], b1 = b[1], b2 = b[2]; return Math.abs(a0 - b0) <= EPSILON * Math.max(1, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1, Math.abs(a2), Math.abs(b2)); } /** * Alias for {@link vec3.subtract} * @function */ var sub = subtract$1; /** * Alias for {@link vec3.multiply} * @function */ var mul$1 = multiply$1; /** * Alias for {@link vec3.divide} * @function */ var div = divide; /** * Alias for {@link vec3.length} * @function */ var len = length$3; /** * Perform some operation over an array of vec3s. * * @param {Array} a the array of vectors to iterate over * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed * @param {Number} offset Number of elements to skip at the beginning of the array * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array * @param {Function} fn Function to call for each vector in the array * @param {Object} [arg] additional argument to pass to fn * @returns {Array} a * @function */ ((function () { var vec = create$3(); return function (a, stride, offset, count, fn, arg) { var i, l; if (!stride) { stride = 3; } if (!offset) { offset = 0; } if (count) { l = Math.min(count * stride + offset, a.length); } else { l = a.length; } for (i = offset; i < l; i += stride) { vec[0] = a[i]; vec[1] = a[i + 1]; vec[2] = a[i + 2]; fn(vec, vec, arg); a[i] = vec[0]; a[i + 1] = vec[1]; a[i + 2] = vec[2]; } return a; }; })()); /** * 4 Dimensional Vector * @module vec4 */ /** * Creates a new, empty vec4 * * @returns {vec4} a new 4D vector */ function create$2() { var out = new ARRAY_TYPE(4); if (ARRAY_TYPE != Float32Array) { out[0] = 0; out[1] = 0; out[2] = 0; out[3] = 0; } return out; } /** * Creates a new vec4 initialized with the given values * * @param {Number} x X component * @param {Number} y Y component * @param {Number} z Z component * @param {Number} w W component * @returns {vec4} a new 4D vector */ function fromValues$1(x, y, z, w) { var out = new ARRAY_TYPE(4); out[0] = x; out[1] = y; out[2] = z; out[3] = w; return out; } /** * Multiplies two vec4's * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {vec4} out */ function multiply(out, a, b) { out[0] = a[0] * b[0]; out[1] = a[1] * b[1]; out[2] = a[2] * b[2]; out[3] = a[3] * b[3]; return out; } /** * Returns the minimum of two vec4's * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {vec4} out */ function min(out, a, b) { out[0] = Math.min(a[0], b[0]); out[1] = Math.min(a[1], b[1]); out[2] = Math.min(a[2], b[2]); out[3] = Math.min(a[3], b[3]); return out; } /** * Returns the maximum of two vec4's * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {vec4} out */ function max$1(out, a, b) { out[0] = Math.max(a[0], b[0]); out[1] = Math.max(a[1], b[1]); out[2] = Math.max(a[2], b[2]); out[3] = Math.max(a[3], b[3]); return out; } /** * Scales a vec4 by a scalar number * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the vector to scale * @param {Number} b amount to scale the vector by * @returns {vec4} out */ function scale$1(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; return out; } /** * Calculates the length of a vec4 * * @param {ReadonlyVec4} a vector to calculate length of * @returns {Number} length of a */ function length$2(a) { var x = a[0]; var y = a[1]; var z = a[2]; var w = a[3]; return Math.hypot(x, y, z, w); } /** * Normalize a vec4 * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a vector to normalize * @returns {vec4} out */ function normalize$2(out, a) { var x = a[0]; var y = a[1]; var z = a[2]; var w = a[3]; var len = x * x + y * y + z * z + w * w; if (len > 0) { len = 1 / Math.sqrt(len); } out[0] = x * len; out[1] = y * len; out[2] = z * len; out[3] = w * len; return out; } /** * Calculates the dot product of two vec4's * * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {Number} dot product of a and b */ function dot$2(a, b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; } /** * Performs a linear interpolation between two vec4's * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @param {Number} t interpolation amount, in the range [0-1], between the two inputs * @returns {vec4} out */ function lerp$1(out, a, b, t) { var ax = a[0]; var ay = a[1]; var az = a[2]; var aw = a[3]; out[0] = ax + t * (b[0] - ax); out[1] = ay + t * (b[1] - ay); out[2] = az + t * (b[2] - az); out[3] = aw + t * (b[3] - aw); return out; } /** * Transforms the vec4 with a mat4. * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the vector to transform * @param {ReadonlyMat4} m matrix to transform with * @returns {vec4} out */ function transformMat4(out, a, m) { var x = a[0], y = a[1], z = a[2], w = a[3]; out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w; out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w; out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w; out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w; return out; } /** * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===) * * @param {ReadonlyVec4} a The first vector. * @param {ReadonlyVec4} b The second vector. * @returns {Boolean} True if the vectors are equal, false otherwise. */ function exactEquals$2(a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3]; } /** * Alias for {@link vec4.multiply} * @function */ var mul = multiply; /** * Perform some operation over an array of vec4s. * * @param {Array} a the array of vectors to iterate over * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed * @param {Number} offset Number of elements to skip at the beginning of the array * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array * @param {Function} fn Function to call for each vector in the array * @param {Object} [arg] additional argument to pass to fn * @returns {Array} a * @function */ ((function () { var vec = create$2(); return function (a, stride, offset, count, fn, arg) { var i, l; if (!stride) { stride = 4; } if (!offset) { offset = 0; } if (count) { l = Math.min(count * stride + offset, a.length); } else { l = a.length; } for (i = offset; i < l; i += stride) { vec[0] = a[i]; vec[1] = a[i + 1]; vec[2] = a[i + 2]; vec[3] = a[i + 3]; fn(vec, vec, arg); a[i] = vec[0]; a[i + 1] = vec[1]; a[i + 2] = vec[2]; a[i + 3] = vec[3]; } return a; }; })()); /** * Quaternion * @module quat */ /** * Creates a new identity quat * * @returns {quat} a new quaternion */ function create$1() { var out = new ARRAY_TYPE(4); if (ARRAY_TYPE != Float32Array) { out[0] = 0; out[1] = 0; out[2] = 0; } out[3] = 1; return out; } /** * Set a quat to the identity quaternion * * @param {quat} out the receiving quaternion * @returns {quat} out */ function identity$1(out) { out[0] = 0; out[1] = 0; out[2] = 0; out[3] = 1; return out; } /** * Sets a quat from the given angle and rotation axis, * then returns it. * * @param {quat} out the receiving quaternion * @param {ReadonlyVec3} axis the axis around which to rotate * @param {Number} rad the angle in radians * @returns {quat} out **/ function setAxisAngle(out, axis, rad) { rad = rad * 0.5; var s = Math.sin(rad); out[0] = s * axis[0]; out[1] = s * axis[1]; out[2] = s * axis[2]; out[3] = Math.cos(rad); return out; } /** * Rotates a quaternion by the given angle about the X axis * * @param {quat} out quat receiving operation result * @param {ReadonlyQuat} a quat to rotate * @param {number} rad angle (in radians) to rotate * @returns {quat} out */ function rotateX(out, a, rad) { rad *= 0.5; var ax = a[0], ay = a[1], az = a[2], aw = a[3]; var bx = Math.sin(rad), bw = Math.cos(rad); out[0] = ax * bw + aw * bx; out[1] = ay * bw + az * bx; out[2] = az * bw - ay * bx; out[3] = aw * bw - ax * bx; return out; } /** * Rotates a quaternion by the given angle about the Y axis * * @param {quat} out quat receiving operation result * @param {ReadonlyQuat} a quat to rotate * @param {number} rad angle (in radians) to rotate * @returns {quat} out */ function rotateY(out, a, rad) { rad *= 0.5; var ax = a[0], ay = a[1], az = a[2], aw = a[3]; var by = Math.sin(rad), bw = Math.cos(rad); out[0] = ax * bw - az * by; out[1] = ay * bw + aw * by; out[2] = az * bw + ax * by; out[3] = aw * bw - ay * by; return out; } /** * Rotates a quaternion by the given angle about the Z axis * * @param {quat} out quat receiving operation result * @param {ReadonlyQuat} a quat to rotate * @param {number} rad angle (in radians) to rotate * @returns {quat} out */ function rotateZ(out, a, rad) { rad *= 0.5; var ax = a[0], ay = a[1], az = a[2], aw = a[3]; var bz = Math.sin(rad), bw = Math.cos(rad); out[0] = ax * bw + ay * bz; out[1] = ay * bw - ax * bz; out[2] = az * bw + aw * bz; out[3] = aw * bw - az * bz; return out; } /** * Performs a spherical linear interpolation between two quat * * @param {quat} out the receiving quaternion * @param {ReadonlyQuat} a the first operand * @param {ReadonlyQuat} b the second operand * @param {Number} t interpolation amount, in the range [0-1], between the two inputs * @returns {quat} out */ function slerp$1(out, a, b, t) { // benchmarks: // http://jsperf.com/quaternion-slerp-implementations var ax = a[0], ay = a[1], az = a[2], aw = a[3]; var bx = b[0], by = b[1], bz = b[2], bw = b[3]; var omega, cosom, sinom, scale0, scale1; // calc cosine cosom