mapbox-gl
Version:
A WebGL interactive maps library
1,849 lines (1,837 loc) • 3.62 MB
JavaScript
/* Mapbox GL JS is Copyright © 2020 Mapbox and subject to the Mapbox Terms of Service ((https://www.mapbox.com/legal/tos/). */
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
typeof define === 'function' && define.amd ? define(factory) :
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.mapboxgl = factory());
})(this, (function () { 'use strict';
/* eslint-disable */
var shared, worker, mapboxgl;
// define gets called three times: one for each chunk. we rely on the order
// they're imported to know which is which
function define(_, chunk) {
if (!shared) {
shared = chunk;
} else if (!worker) {
worker = chunk;
} else {
var workerBundleString = "self.onerror = function() { console.error('An error occurred while parsing the WebWorker bundle. This is most likely due to improper transpilation by Babel; please see https://docs.mapbox.com/mapbox-gl-js/guides/install/#transpiling'); }; var sharedChunk = {}; (" + shared + ")(sharedChunk); (" + worker + ")(sharedChunk); self.onerror = null;"
var sharedChunk = {};
shared(sharedChunk);
mapboxgl = chunk(sharedChunk);
if (typeof window !== 'undefined' && window && window.URL && window.URL.createObjectURL) {
mapboxgl.workerUrl = window.URL.createObjectURL(new Blob([workerBundleString], { type: 'text/javascript' }));
}
}
}
define(['exports'], (function (exports) { 'use strict';
/**
* Common utilities
* @module glMatrix
*/
// Configuration Constants
var EPSILON = 0.000001;
var ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;
if (!Math.hypot)
Math.hypot = function () {
var y = 0, i = arguments.length;
while (i--) {
y += arguments[i] * arguments[i];
}
return Math.sqrt(y);
};
/**
* 2x2 Matrix
* @module mat2
*/
/**
* Creates a new identity mat2
*
* @returns {mat2} a new 2x2 matrix
*/
function create$6() {
var out = new ARRAY_TYPE(4);
if (ARRAY_TYPE != Float32Array) {
out[1] = 0;
out[2] = 0;
}
out[0] = 1;
out[3] = 1;
return out;
}
/**
* Inverts a mat2
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the source matrix
* @returns {mat2} out
*/
function invert$2(out, a) {
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
// Calculate the determinant
var det = a0 * a3 - a2 * a1;
if (!det) {
return null;
}
det = 1 / det;
out[0] = a3 * det;
out[1] = -a1 * det;
out[2] = -a2 * det;
out[3] = a0 * det;
return out;
}
/**
* Rotates a mat2 by the given angle
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the matrix to rotate
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat2} out
*/
function rotate$1(out, a, rad) {
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
var s = Math.sin(rad);
var c = Math.cos(rad);
out[0] = a0 * c + a2 * s;
out[1] = a1 * c + a3 * s;
out[2] = a0 * -s + a2 * c;
out[3] = a1 * -s + a3 * c;
return out;
}
/**
* Scales the mat2 by the dimensions in the given vec2
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the matrix to rotate
* @param {ReadonlyVec2} v the vec2 to scale the matrix by
* @returns {mat2} out
**/
function scale$4(out, a, v) {
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
var v0 = v[0], v1 = v[1];
out[0] = a0 * v0;
out[1] = a1 * v0;
out[2] = a2 * v1;
out[3] = a3 * v1;
return out;
}
/**
* 3x3 Matrix
* @module mat3
*/
/**
* Creates a new identity mat3
*
* @returns {mat3} a new 3x3 matrix
*/
function create$5() {
var out = new ARRAY_TYPE(9);
if (ARRAY_TYPE != Float32Array) {
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[5] = 0;
out[6] = 0;
out[7] = 0;
}
out[0] = 1;
out[4] = 1;
out[8] = 1;
return out;
}
/**
* Copies the upper-left 3x3 values into the given mat3.
*
* @param {mat3} out the receiving 3x3 matrix
* @param {ReadonlyMat4} a the source 4x4 matrix
* @returns {mat3} out
*/
function fromMat4(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[4];
out[4] = a[5];
out[5] = a[6];
out[6] = a[8];
out[7] = a[9];
out[8] = a[10];
return out;
}
/**
* Inverts a mat3
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the source matrix
* @returns {mat3} out
*/
function invert$1(out, a) {
var a00 = a[0], a01 = a[1], a02 = a[2];
var a10 = a[3], a11 = a[4], a12 = a[5];
var a20 = a[6], a21 = a[7], a22 = a[8];
var b01 = a22 * a11 - a12 * a21;
var b11 = -a22 * a10 + a12 * a20;
var b21 = a21 * a10 - a11 * a20;
// Calculate the determinant
var det = a00 * b01 + a01 * b11 + a02 * b21;
if (!det) {
return null;
}
det = 1 / det;
out[0] = b01 * det;
out[1] = (-a22 * a01 + a02 * a21) * det;
out[2] = (a12 * a01 - a02 * a11) * det;
out[3] = b11 * det;
out[4] = (a22 * a00 - a02 * a20) * det;
out[5] = (-a12 * a00 + a02 * a10) * det;
out[6] = b21 * det;
out[7] = (-a21 * a00 + a01 * a20) * det;
out[8] = (a11 * a00 - a01 * a10) * det;
return out;
}
/**
* Calculates the adjugate of a mat3
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the source matrix
* @returns {mat3} out
*/
function adjoint(out, a) {
var a00 = a[0], a01 = a[1], a02 = a[2];
var a10 = a[3], a11 = a[4], a12 = a[5];
var a20 = a[6], a21 = a[7], a22 = a[8];
out[0] = a11 * a22 - a12 * a21;
out[1] = a02 * a21 - a01 * a22;
out[2] = a01 * a12 - a02 * a11;
out[3] = a12 * a20 - a10 * a22;
out[4] = a00 * a22 - a02 * a20;
out[5] = a02 * a10 - a00 * a12;
out[6] = a10 * a21 - a11 * a20;
out[7] = a01 * a20 - a00 * a21;
out[8] = a00 * a11 - a01 * a10;
return out;
}
/**
* Multiplies two mat3's
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the first operand
* @param {ReadonlyMat3} b the second operand
* @returns {mat3} out
*/
function multiply$3(out, a, b) {
var a00 = a[0], a01 = a[1], a02 = a[2];
var a10 = a[3], a11 = a[4], a12 = a[5];
var a20 = a[6], a21 = a[7], a22 = a[8];
var b00 = b[0], b01 = b[1], b02 = b[2];
var b10 = b[3], b11 = b[4], b12 = b[5];
var b20 = b[6], b21 = b[7], b22 = b[8];
out[0] = b00 * a00 + b01 * a10 + b02 * a20;
out[1] = b00 * a01 + b01 * a11 + b02 * a21;
out[2] = b00 * a02 + b01 * a12 + b02 * a22;
out[3] = b10 * a00 + b11 * a10 + b12 * a20;
out[4] = b10 * a01 + b11 * a11 + b12 * a21;
out[5] = b10 * a02 + b11 * a12 + b12 * a22;
out[6] = b20 * a00 + b21 * a10 + b22 * a20;
out[7] = b20 * a01 + b21 * a11 + b22 * a21;
out[8] = b20 * a02 + b21 * a12 + b22 * a22;
return out;
}
/**
* Creates a matrix from a given angle
* This is equivalent to (but much faster than):
*
* mat3.identity(dest);
* mat3.rotate(dest, dest, rad);
*
* @param {mat3} out mat3 receiving operation result
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat3} out
*/
function fromRotation$1(out, rad) {
var s = Math.sin(rad), c = Math.cos(rad);
out[0] = c;
out[1] = s;
out[2] = 0;
out[3] = -s;
out[4] = c;
out[5] = 0;
out[6] = 0;
out[7] = 0;
out[8] = 1;
return out;
}
/**
* 4x4 Matrix<br>Format: column-major, when typed out it looks like row-major<br>The matrices are being post multiplied.
* @module mat4
*/
/**
* Creates a new identity mat4
*
* @returns {mat4} a new 4x4 matrix
*/
function create$4() {
var out = new ARRAY_TYPE(16);
if (ARRAY_TYPE != Float32Array) {
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
}
out[0] = 1;
out[5] = 1;
out[10] = 1;
out[15] = 1;
return out;
}
/**
* Creates a new mat4 initialized with values from an existing matrix
*
* @param {ReadonlyMat4} a matrix to clone
* @returns {mat4} a new 4x4 matrix
*/
function clone$2(a) {
var out = new ARRAY_TYPE(16);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
out[9] = a[9];
out[10] = a[10];
out[11] = a[11];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
return out;
}
/**
* Create a new mat4 with the given values
*
* @param {Number} m00 Component in column 0, row 0 position (index 0)
* @param {Number} m01 Component in column 0, row 1 position (index 1)
* @param {Number} m02 Component in column 0, row 2 position (index 2)
* @param {Number} m03 Component in column 0, row 3 position (index 3)
* @param {Number} m10 Component in column 1, row 0 position (index 4)
* @param {Number} m11 Component in column 1, row 1 position (index 5)
* @param {Number} m12 Component in column 1, row 2 position (index 6)
* @param {Number} m13 Component in column 1, row 3 position (index 7)
* @param {Number} m20 Component in column 2, row 0 position (index 8)
* @param {Number} m21 Component in column 2, row 1 position (index 9)
* @param {Number} m22 Component in column 2, row 2 position (index 10)
* @param {Number} m23 Component in column 2, row 3 position (index 11)
* @param {Number} m30 Component in column 3, row 0 position (index 12)
* @param {Number} m31 Component in column 3, row 1 position (index 13)
* @param {Number} m32 Component in column 3, row 2 position (index 14)
* @param {Number} m33 Component in column 3, row 3 position (index 15)
* @returns {mat4} A new mat4
*/
function fromValues$3(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
var out = new ARRAY_TYPE(16);
out[0] = m00;
out[1] = m01;
out[2] = m02;
out[3] = m03;
out[4] = m10;
out[5] = m11;
out[6] = m12;
out[7] = m13;
out[8] = m20;
out[9] = m21;
out[10] = m22;
out[11] = m23;
out[12] = m30;
out[13] = m31;
out[14] = m32;
out[15] = m33;
return out;
}
/**
* Set a mat4 to the identity matrix
*
* @param {mat4} out the receiving matrix
* @returns {mat4} out
*/
function identity$2(out) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = 1;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 1;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Transpose the values of a mat4
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the source matrix
* @returns {mat4} out
*/
function transpose(out, a) {
// If we are transposing ourselves we can skip a few steps but have to cache some values
if (out === a) {
var a01 = a[1], a02 = a[2], a03 = a[3];
var a12 = a[6], a13 = a[7];
var a23 = a[11];
out[1] = a[4];
out[2] = a[8];
out[3] = a[12];
out[4] = a01;
out[6] = a[9];
out[7] = a[13];
out[8] = a02;
out[9] = a12;
out[11] = a[14];
out[12] = a03;
out[13] = a13;
out[14] = a23;
} else {
out[0] = a[0];
out[1] = a[4];
out[2] = a[8];
out[3] = a[12];
out[4] = a[1];
out[5] = a[5];
out[6] = a[9];
out[7] = a[13];
out[8] = a[2];
out[9] = a[6];
out[10] = a[10];
out[11] = a[14];
out[12] = a[3];
out[13] = a[7];
out[14] = a[11];
out[15] = a[15];
}
return out;
}
/**
* Inverts a mat4
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the source matrix
* @returns {mat4} out
*/
function invert(out, a) {
var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
var a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
var a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
var a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
var b00 = a00 * a11 - a01 * a10;
var b01 = a00 * a12 - a02 * a10;
var b02 = a00 * a13 - a03 * a10;
var b03 = a01 * a12 - a02 * a11;
var b04 = a01 * a13 - a03 * a11;
var b05 = a02 * a13 - a03 * a12;
var b06 = a20 * a31 - a21 * a30;
var b07 = a20 * a32 - a22 * a30;
var b08 = a20 * a33 - a23 * a30;
var b09 = a21 * a32 - a22 * a31;
var b10 = a21 * a33 - a23 * a31;
var b11 = a22 * a33 - a23 * a32;
// Calculate the determinant
var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
if (!det) {
return null;
}
det = 1 / det;
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
return out;
}
/**
* Multiplies two mat4s
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the first operand
* @param {ReadonlyMat4} b the second operand
* @returns {mat4} out
*/
function multiply$2(out, a, b) {
var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
var a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
var a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
var a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
// Cache only the current line of the second matrix
var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[4];
b1 = b[5];
b2 = b[6];
b3 = b[7];
out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[8];
b1 = b[9];
b2 = b[10];
b3 = b[11];
out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[12];
b1 = b[13];
b2 = b[14];
b3 = b[15];
out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
return out;
}
/**
* Translate a mat4 by the given vector
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to translate
* @param {ReadonlyVec3} v vector to translate by
* @returns {mat4} out
*/
function translate$1(out, a, v) {
var x = v[0], y = v[1], z = v[2];
var a00, a01, a02, a03;
var a10, a11, a12, a13;
var a20, a21, a22, a23;
if (a === out) {
out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
} else {
a00 = a[0];
a01 = a[1];
a02 = a[2];
a03 = a[3];
a10 = a[4];
a11 = a[5];
a12 = a[6];
a13 = a[7];
a20 = a[8];
a21 = a[9];
a22 = a[10];
a23 = a[11];
out[0] = a00;
out[1] = a01;
out[2] = a02;
out[3] = a03;
out[4] = a10;
out[5] = a11;
out[6] = a12;
out[7] = a13;
out[8] = a20;
out[9] = a21;
out[10] = a22;
out[11] = a23;
out[12] = a00 * x + a10 * y + a20 * z + a[12];
out[13] = a01 * x + a11 * y + a21 * z + a[13];
out[14] = a02 * x + a12 * y + a22 * z + a[14];
out[15] = a03 * x + a13 * y + a23 * z + a[15];
}
return out;
}
/**
* Scales the mat4 by the dimensions in the given vec3 not using vectorization
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to scale
* @param {ReadonlyVec3} v the vec3 to scale the matrix by
* @returns {mat4} out
**/
function scale$3(out, a, v) {
var x = v[0], y = v[1], z = v[2];
out[0] = a[0] * x;
out[1] = a[1] * x;
out[2] = a[2] * x;
out[3] = a[3] * x;
out[4] = a[4] * y;
out[5] = a[5] * y;
out[6] = a[6] * y;
out[7] = a[7] * y;
out[8] = a[8] * z;
out[9] = a[9] * z;
out[10] = a[10] * z;
out[11] = a[11] * z;
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
return out;
}
/**
* Rotates a matrix by the given angle around the X axis
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to rotate
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
function rotateX$1(out, a, rad) {
var s = Math.sin(rad);
var c = Math.cos(rad);
var a10 = a[4];
var a11 = a[5];
var a12 = a[6];
var a13 = a[7];
var a20 = a[8];
var a21 = a[9];
var a22 = a[10];
var a23 = a[11];
if (a !== out) {
// If the source and destination differ, copy the unchanged rows
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
// Perform axis-specific matrix multiplication
out[4] = a10 * c + a20 * s;
out[5] = a11 * c + a21 * s;
out[6] = a12 * c + a22 * s;
out[7] = a13 * c + a23 * s;
out[8] = a20 * c - a10 * s;
out[9] = a21 * c - a11 * s;
out[10] = a22 * c - a12 * s;
out[11] = a23 * c - a13 * s;
return out;
}
/**
* Rotates a matrix by the given angle around the Y axis
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to rotate
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
function rotateY$1(out, a, rad) {
var s = Math.sin(rad);
var c = Math.cos(rad);
var a00 = a[0];
var a01 = a[1];
var a02 = a[2];
var a03 = a[3];
var a20 = a[8];
var a21 = a[9];
var a22 = a[10];
var a23 = a[11];
if (a !== out) {
// If the source and destination differ, copy the unchanged rows
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
// Perform axis-specific matrix multiplication
out[0] = a00 * c - a20 * s;
out[1] = a01 * c - a21 * s;
out[2] = a02 * c - a22 * s;
out[3] = a03 * c - a23 * s;
out[8] = a00 * s + a20 * c;
out[9] = a01 * s + a21 * c;
out[10] = a02 * s + a22 * c;
out[11] = a03 * s + a23 * c;
return out;
}
/**
* Rotates a matrix by the given angle around the Z axis
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to rotate
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
function rotateZ$1(out, a, rad) {
var s = Math.sin(rad);
var c = Math.cos(rad);
var a00 = a[0];
var a01 = a[1];
var a02 = a[2];
var a03 = a[3];
var a10 = a[4];
var a11 = a[5];
var a12 = a[6];
var a13 = a[7];
if (a !== out) {
// If the source and destination differ, copy the unchanged last row
out[8] = a[8];
out[9] = a[9];
out[10] = a[10];
out[11] = a[11];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
// Perform axis-specific matrix multiplication
out[0] = a00 * c + a10 * s;
out[1] = a01 * c + a11 * s;
out[2] = a02 * c + a12 * s;
out[3] = a03 * c + a13 * s;
out[4] = a10 * c - a00 * s;
out[5] = a11 * c - a01 * s;
out[6] = a12 * c - a02 * s;
out[7] = a13 * c - a03 * s;
return out;
}
/**
* Creates a matrix from a vector translation
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.translate(dest, dest, vec);
*
* @param {mat4} out mat4 receiving operation result
* @param {ReadonlyVec3} v Translation vector
* @returns {mat4} out
*/
function fromTranslation(out, v) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = 1;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 1;
out[11] = 0;
out[12] = v[0];
out[13] = v[1];
out[14] = v[2];
out[15] = 1;
return out;
}
/**
* Creates a matrix from a vector scaling
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.scale(dest, dest, vec);
*
* @param {mat4} out mat4 receiving operation result
* @param {ReadonlyVec3} v Scaling vector
* @returns {mat4} out
*/
function fromScaling(out, v) {
out[0] = v[0];
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = v[1];
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = v[2];
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Creates a matrix from a given angle around a given axis
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.rotate(dest, dest, rad, axis);
*
* @param {mat4} out mat4 receiving operation result
* @param {Number} rad the angle to rotate the matrix by
* @param {ReadonlyVec3} axis the axis to rotate around
* @returns {mat4} out
*/
function fromRotation(out, rad, axis) {
var x = axis[0], y = axis[1], z = axis[2];
var len = Math.hypot(x, y, z);
var s, c, t;
if (len < EPSILON) {
return null;
}
len = 1 / len;
x *= len;
y *= len;
z *= len;
s = Math.sin(rad);
c = Math.cos(rad);
t = 1 - c;
// Perform rotation-specific matrix multiplication
out[0] = x * x * t + c;
out[1] = y * x * t + z * s;
out[2] = z * x * t - y * s;
out[3] = 0;
out[4] = x * y * t - z * s;
out[5] = y * y * t + c;
out[6] = z * y * t + x * s;
out[7] = 0;
out[8] = x * z * t + y * s;
out[9] = y * z * t - x * s;
out[10] = z * z * t + c;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Creates a matrix from a quaternion rotation, vector translation and vector scale
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.translate(dest, vec);
* let quatMat = mat4.create();
* quat4.toMat4(quat, quatMat);
* mat4.multiply(dest, quatMat);
* mat4.scale(dest, scale)
*
* @param {mat4} out mat4 receiving operation result
* @param {quat4} q Rotation quaternion
* @param {ReadonlyVec3} v Translation vector
* @param {ReadonlyVec3} s Scaling vector
* @returns {mat4} out
*/
function fromRotationTranslationScale(out, q, v, s) {
// Quaternion math
var x = q[0], y = q[1], z = q[2], w = q[3];
var x2 = x + x;
var y2 = y + y;
var z2 = z + z;
var xx = x * x2;
var xy = x * y2;
var xz = x * z2;
var yy = y * y2;
var yz = y * z2;
var zz = z * z2;
var wx = w * x2;
var wy = w * y2;
var wz = w * z2;
var sx = s[0];
var sy = s[1];
var sz = s[2];
out[0] = (1 - (yy + zz)) * sx;
out[1] = (xy + wz) * sx;
out[2] = (xz - wy) * sx;
out[3] = 0;
out[4] = (xy - wz) * sy;
out[5] = (1 - (xx + zz)) * sy;
out[6] = (yz + wx) * sy;
out[7] = 0;
out[8] = (xz + wy) * sz;
out[9] = (yz - wx) * sz;
out[10] = (1 - (xx + yy)) * sz;
out[11] = 0;
out[12] = v[0];
out[13] = v[1];
out[14] = v[2];
out[15] = 1;
return out;
}
/**
* Calculates a 4x4 matrix from the given quaternion
*
* @param {mat4} out mat4 receiving operation result
* @param {ReadonlyQuat} q Quaternion to create matrix from
*
* @returns {mat4} out
*/
function fromQuat(out, q) {
var x = q[0], y = q[1], z = q[2], w = q[3];
var x2 = x + x;
var y2 = y + y;
var z2 = z + z;
var xx = x * x2;
var yx = y * x2;
var yy = y * y2;
var zx = z * x2;
var zy = z * y2;
var zz = z * z2;
var wx = w * x2;
var wy = w * y2;
var wz = w * z2;
out[0] = 1 - yy - zz;
out[1] = yx + wz;
out[2] = zx - wy;
out[3] = 0;
out[4] = yx - wz;
out[5] = 1 - xx - zz;
out[6] = zy + wx;
out[7] = 0;
out[8] = zx + wy;
out[9] = zy - wx;
out[10] = 1 - xx - yy;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Generates a perspective projection matrix with the given bounds.
* The near/far clip planes correspond to a normalized device coordinate Z range of [-1, 1],
* which matches WebGL/OpenGL's clip volume.
* Passing null/undefined/no value for far will generate infinite projection matrix.
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {number} fovy Vertical field of view in radians
* @param {number} aspect Aspect ratio. typically viewport width/height
* @param {number} near Near bound of the frustum
* @param {number} far Far bound of the frustum, can be null or Infinity
* @returns {mat4} out
*/
function perspectiveNO(out, fovy, aspect, near, far) {
var f = 1 / Math.tan(fovy / 2), nf;
out[0] = f / aspect;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = f;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[11] = -1;
out[12] = 0;
out[13] = 0;
out[15] = 0;
if (far != null && far !== Infinity) {
nf = 1 / (near - far);
out[10] = (far + near) * nf;
out[14] = 2 * far * near * nf;
} else {
out[10] = -1;
out[14] = -2 * near;
}
return out;
}
/**
* Alias for {@link mat4.perspectiveNO}
* @function
*/
var perspective = perspectiveNO;
/**
* Generates a orthogonal projection matrix with the given bounds.
* The near/far clip planes correspond to a normalized device coordinate Z range of [-1, 1],
* which matches WebGL/OpenGL's clip volume.
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {number} left Left bound of the frustum
* @param {number} right Right bound of the frustum
* @param {number} bottom Bottom bound of the frustum
* @param {number} top Top bound of the frustum
* @param {number} near Near bound of the frustum
* @param {number} far Far bound of the frustum
* @returns {mat4} out
*/
function orthoNO(out, left, right, bottom, top, near, far) {
var lr = 1 / (left - right);
var bt = 1 / (bottom - top);
var nf = 1 / (near - far);
out[0] = -2 * lr;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = -2 * bt;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 2 * nf;
out[11] = 0;
out[12] = (left + right) * lr;
out[13] = (top + bottom) * bt;
out[14] = (far + near) * nf;
out[15] = 1;
return out;
}
/**
* Alias for {@link mat4.orthoNO}
* @function
*/
var ortho = orthoNO;
/**
* Alias for {@link mat4.multiply}
* @function
*/
var mul$2 = multiply$2;
/**
* 3 Dimensional Vector
* @module vec3
*/
/**
* Creates a new, empty vec3
*
* @returns {vec3} a new 3D vector
*/
function create$3() {
var out = new ARRAY_TYPE(3);
if (ARRAY_TYPE != Float32Array) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
}
return out;
}
/**
* Creates a new vec3 initialized with values from an existing vector
*
* @param {ReadonlyVec3} a vector to clone
* @returns {vec3} a new 3D vector
*/
function clone$1(a) {
var out = new ARRAY_TYPE(3);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
return out;
}
/**
* Calculates the length of a vec3
*
* @param {ReadonlyVec3} a vector to calculate length of
* @returns {Number} length of a
*/
function length$3(a) {
var x = a[0];
var y = a[1];
var z = a[2];
return Math.hypot(x, y, z);
}
/**
* Creates a new vec3 initialized with the given values
*
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @returns {vec3} a new 3D vector
*/
function fromValues$2(x, y, z) {
var out = new ARRAY_TYPE(3);
out[0] = x;
out[1] = y;
out[2] = z;
return out;
}
/**
* Set the components of a vec3 to the given values
*
* @param {vec3} out the receiving vector
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @returns {vec3} out
*/
function set(out, x, y, z) {
out[0] = x;
out[1] = y;
out[2] = z;
return out;
}
/**
* Adds two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
function add$1(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
return out;
}
/**
* Subtracts vector b from vector a
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
function subtract$1(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
return out;
}
/**
* Multiplies two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
function multiply$1(out, a, b) {
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
out[2] = a[2] * b[2];
return out;
}
/**
* Divides two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
function divide(out, a, b) {
out[0] = a[0] / b[0];
out[1] = a[1] / b[1];
out[2] = a[2] / b[2];
return out;
}
/**
* Returns the minimum of two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
function min$1(out, a, b) {
out[0] = Math.min(a[0], b[0]);
out[1] = Math.min(a[1], b[1]);
out[2] = Math.min(a[2], b[2]);
return out;
}
/**
* Returns the maximum of two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
function max$2(out, a, b) {
out[0] = Math.max(a[0], b[0]);
out[1] = Math.max(a[1], b[1]);
out[2] = Math.max(a[2], b[2]);
return out;
}
/**
* Scales a vec3 by a scalar number
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the vector to scale
* @param {Number} b amount to scale the vector by
* @returns {vec3} out
*/
function scale$2(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
return out;
}
/**
* Adds two vec3's after scaling the second operand by a scalar value
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @param {Number} scale the amount to scale b by before adding
* @returns {vec3} out
*/
function scaleAndAdd(out, a, b, scale) {
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
return out;
}
/**
* Calculates the euclidian distance between two vec3's
*
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {Number} distance between a and b
*/
function distance(a, b) {
var x = b[0] - a[0];
var y = b[1] - a[1];
var z = b[2] - a[2];
return Math.hypot(x, y, z);
}
/**
* Calculates the squared euclidian distance between two vec3's
*
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {Number} squared distance between a and b
*/
function squaredDistance(a, b) {
var x = b[0] - a[0];
var y = b[1] - a[1];
var z = b[2] - a[2];
return x * x + y * y + z * z;
}
/**
* Calculates the squared length of a vec3
*
* @param {ReadonlyVec3} a vector to calculate squared length of
* @returns {Number} squared length of a
*/
function squaredLength(a) {
var x = a[0];
var y = a[1];
var z = a[2];
return x * x + y * y + z * z;
}
/**
* Negates the components of a vec3
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a vector to negate
* @returns {vec3} out
*/
function negate(out, a) {
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
return out;
}
/**
* Normalize a vec3
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a vector to normalize
* @returns {vec3} out
*/
function normalize$3(out, a) {
var x = a[0];
var y = a[1];
var z = a[2];
var len = x * x + y * y + z * z;
if (len > 0) {
//TODO: evaluate use of glm_invsqrt here?
len = 1 / Math.sqrt(len);
}
out[0] = a[0] * len;
out[1] = a[1] * len;
out[2] = a[2] * len;
return out;
}
/**
* Calculates the dot product of two vec3's
*
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {Number} dot product of a and b
*/
function dot$3(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/**
* Computes the cross product of two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
function cross(out, a, b) {
var ax = a[0], ay = a[1], az = a[2];
var bx = b[0], by = b[1], bz = b[2];
out[0] = ay * bz - az * by;
out[1] = az * bx - ax * bz;
out[2] = ax * by - ay * bx;
return out;
}
/**
* Performs a linear interpolation between two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {vec3} out
*/
function lerp$2(out, a, b, t) {
var ax = a[0];
var ay = a[1];
var az = a[2];
out[0] = ax + t * (b[0] - ax);
out[1] = ay + t * (b[1] - ay);
out[2] = az + t * (b[2] - az);
return out;
}
/**
* Transforms the vec3 with a mat4.
* 4th vector component is implicitly '1'
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the vector to transform
* @param {ReadonlyMat4} m matrix to transform with
* @returns {vec3} out
*/
function transformMat4$1(out, a, m) {
var x = a[0], y = a[1], z = a[2];
var w = m[3] * x + m[7] * y + m[11] * z + m[15];
w = w || 1;
out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
return out;
}
/**
* Transforms the vec3 with a mat3.
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the vector to transform
* @param {ReadonlyMat3} m the 3x3 matrix to transform with
* @returns {vec3} out
*/
function transformMat3(out, a, m) {
var x = a[0], y = a[1], z = a[2];
out[0] = x * m[0] + y * m[3] + z * m[6];
out[1] = x * m[1] + y * m[4] + z * m[7];
out[2] = x * m[2] + y * m[5] + z * m[8];
return out;
}
/**
* Transforms the vec3 with a quat
* Can also be used for dual quaternions. (Multiply it with the real part)
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the vector to transform
* @param {ReadonlyQuat} q quaternion to transform with
* @returns {vec3} out
*/
function transformQuat(out, a, q) {
// benchmarks: https://jsperf.com/quaternion-transform-vec3-implementations-fixed
var qx = q[0], qy = q[1], qz = q[2], qw = q[3];
var x = a[0], y = a[1], z = a[2];
// var qvec = [qx, qy, qz];
// var uv = vec3.cross([], qvec, a);
var uvx = qy * z - qz * y, uvy = qz * x - qx * z, uvz = qx * y - qy * x;
// var uuv = vec3.cross([], qvec, uv);
var uuvx = qy * uvz - qz * uvy, uuvy = qz * uvx - qx * uvz, uuvz = qx * uvy - qy * uvx;
// vec3.scale(uv, uv, 2 * w);
var w2 = qw * 2;
uvx *= w2;
uvy *= w2;
uvz *= w2;
// vec3.scale(uuv, uuv, 2);
uuvx *= 2;
uuvy *= 2;
uuvz *= 2;
// return vec3.add(out, a, vec3.add(out, uv, uuv));
out[0] = x + uvx + uuvx;
out[1] = y + uvy + uuvy;
out[2] = z + uvz + uuvz;
return out;
}
/**
* Get the angle between two 3D vectors
* @param {ReadonlyVec3} a The first operand
* @param {ReadonlyVec3} b The second operand
* @returns {Number} The angle in radians
*/
function angle(a, b) {
var ax = a[0], ay = a[1], az = a[2], bx = b[0], by = b[1], bz = b[2], mag1 = Math.sqrt(ax * ax + ay * ay + az * az), mag2 = Math.sqrt(bx * bx + by * by + bz * bz), mag = mag1 * mag2, cosine = mag && dot$3(a, b) / mag;
return Math.acos(Math.min(Math.max(cosine, -1), 1));
}
/**
* Set the components of a vec3 to zero
*
* @param {vec3} out the receiving vector
* @returns {vec3} out
*/
function zero(out) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
return out;
}
/**
* Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
*
* @param {ReadonlyVec3} a The first vector.
* @param {ReadonlyVec3} b The second vector.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
function exactEquals$3(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];
}
/**
* Returns whether or not the vectors have approximately the same elements in the same position.
*
* @param {ReadonlyVec3} a The first vector.
* @param {ReadonlyVec3} b The second vector.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
function equals$2(a, b) {
var a0 = a[0], a1 = a[1], a2 = a[2];
var b0 = b[0], b1 = b[1], b2 = b[2];
return Math.abs(a0 - b0) <= EPSILON * Math.max(1, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1, Math.abs(a2), Math.abs(b2));
}
/**
* Alias for {@link vec3.subtract}
* @function
*/
var sub = subtract$1;
/**
* Alias for {@link vec3.multiply}
* @function
*/
var mul$1 = multiply$1;
/**
* Alias for {@link vec3.divide}
* @function
*/
var div = divide;
/**
* Alias for {@link vec3.length}
* @function
*/
var len = length$3;
/**
* Perform some operation over an array of vec3s.
*
* @param {Array} a the array of vectors to iterate over
* @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
* @param {Number} offset Number of elements to skip at the beginning of the array
* @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
* @param {Function} fn Function to call for each vector in the array
* @param {Object} [arg] additional argument to pass to fn
* @returns {Array} a
* @function
*/
((function () {
var vec = create$3();
return function (a, stride, offset, count, fn, arg) {
var i, l;
if (!stride) {
stride = 3;
}
if (!offset) {
offset = 0;
}
if (count) {
l = Math.min(count * stride + offset, a.length);
} else {
l = a.length;
}
for (i = offset; i < l; i += stride) {
vec[0] = a[i];
vec[1] = a[i + 1];
vec[2] = a[i + 2];
fn(vec, vec, arg);
a[i] = vec[0];
a[i + 1] = vec[1];
a[i + 2] = vec[2];
}
return a;
};
})());
/**
* 4 Dimensional Vector
* @module vec4
*/
/**
* Creates a new, empty vec4
*
* @returns {vec4} a new 4D vector
*/
function create$2() {
var out = new ARRAY_TYPE(4);
if (ARRAY_TYPE != Float32Array) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 0;
}
return out;
}
/**
* Creates a new vec4 initialized with the given values
*
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @param {Number} w W component
* @returns {vec4} a new 4D vector
*/
function fromValues$1(x, y, z, w) {
var out = new ARRAY_TYPE(4);
out[0] = x;
out[1] = y;
out[2] = z;
out[3] = w;
return out;
}
/**
* Multiplies two vec4's
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {vec4} out
*/
function multiply(out, a, b) {
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
out[2] = a[2] * b[2];
out[3] = a[3] * b[3];
return out;
}
/**
* Returns the minimum of two vec4's
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {vec4} out
*/
function min(out, a, b) {
out[0] = Math.min(a[0], b[0]);
out[1] = Math.min(a[1], b[1]);
out[2] = Math.min(a[2], b[2]);
out[3] = Math.min(a[3], b[3]);
return out;
}
/**
* Returns the maximum of two vec4's
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {vec4} out
*/
function max$1(out, a, b) {
out[0] = Math.max(a[0], b[0]);
out[1] = Math.max(a[1], b[1]);
out[2] = Math.max(a[2], b[2]);
out[3] = Math.max(a[3], b[3]);
return out;
}
/**
* Scales a vec4 by a scalar number
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the vector to scale
* @param {Number} b amount to scale the vector by
* @returns {vec4} out
*/
function scale$1(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
return out;
}
/**
* Calculates the length of a vec4
*
* @param {ReadonlyVec4} a vector to calculate length of
* @returns {Number} length of a
*/
function length$2(a) {
var x = a[0];
var y = a[1];
var z = a[2];
var w = a[3];
return Math.hypot(x, y, z, w);
}
/**
* Normalize a vec4
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a vector to normalize
* @returns {vec4} out
*/
function normalize$2(out, a) {
var x = a[0];
var y = a[1];
var z = a[2];
var w = a[3];
var len = x * x + y * y + z * z + w * w;
if (len > 0) {
len = 1 / Math.sqrt(len);
}
out[0] = x * len;
out[1] = y * len;
out[2] = z * len;
out[3] = w * len;
return out;
}
/**
* Calculates the dot product of two vec4's
*
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {Number} dot product of a and b
*/
function dot$2(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}
/**
* Performs a linear interpolation between two vec4's
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {vec4} out
*/
function lerp$1(out, a, b, t) {
var ax = a[0];
var ay = a[1];
var az = a[2];
var aw = a[3];
out[0] = ax + t * (b[0] - ax);
out[1] = ay + t * (b[1] - ay);
out[2] = az + t * (b[2] - az);
out[3] = aw + t * (b[3] - aw);
return out;
}
/**
* Transforms the vec4 with a mat4.
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the vector to transform
* @param {ReadonlyMat4} m matrix to transform with
* @returns {vec4} out
*/
function transformMat4(out, a, m) {
var x = a[0], y = a[1], z = a[2], w = a[3];
out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
return out;
}
/**
* Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
*
* @param {ReadonlyVec4} a The first vector.
* @param {ReadonlyVec4} b The second vector.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
function exactEquals$2(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
}
/**
* Alias for {@link vec4.multiply}
* @function
*/
var mul = multiply;
/**
* Perform some operation over an array of vec4s.
*
* @param {Array} a the array of vectors to iterate over
* @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
* @param {Number} offset Number of elements to skip at the beginning of the array
* @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array
* @param {Function} fn Function to call for each vector in the array
* @param {Object} [arg] additional argument to pass to fn
* @returns {Array} a
* @function
*/
((function () {
var vec = create$2();
return function (a, stride, offset, count, fn, arg) {
var i, l;
if (!stride) {
stride = 4;
}
if (!offset) {
offset = 0;
}
if (count) {
l = Math.min(count * stride + offset, a.length);
} else {
l = a.length;
}
for (i = offset; i < l; i += stride) {
vec[0] = a[i];
vec[1] = a[i + 1];
vec[2] = a[i + 2];
vec[3] = a[i + 3];
fn(vec, vec, arg);
a[i] = vec[0];
a[i + 1] = vec[1];
a[i + 2] = vec[2];
a[i + 3] = vec[3];
}
return a;
};
})());
/**
* Quaternion
* @module quat
*/
/**
* Creates a new identity quat
*
* @returns {quat} a new quaternion
*/
function create$1() {
var out = new ARRAY_TYPE(4);
if (ARRAY_TYPE != Float32Array) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
}
out[3] = 1;
return out;
}
/**
* Set a quat to the identity quaternion
*
* @param {quat} out the receiving quaternion
* @returns {quat} out
*/
function identity$1(out) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
return out;
}
/**
* Sets a quat from the given angle and rotation axis,
* then returns it.
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyVec3} axis the axis around which to rotate
* @param {Number} rad the angle in radians
* @returns {quat} out
**/
function setAxisAngle(out, axis, rad) {
rad = rad * 0.5;
var s = Math.sin(rad);
out[0] = s * axis[0];
out[1] = s * axis[1];
out[2] = s * axis[2];
out[3] = Math.cos(rad);
return out;
}
/**
* Rotates a quaternion by the given angle about the X axis
*
* @param {quat} out quat receiving operation result
* @param {ReadonlyQuat} a quat to rotate
* @param {number} rad angle (in radians) to rotate
* @returns {quat} out
*/
function rotateX(out, a, rad) {
rad *= 0.5;
var ax = a[0], ay = a[1], az = a[2], aw = a[3];
var bx = Math.sin(rad), bw = Math.cos(rad);
out[0] = ax * bw + aw * bx;
out[1] = ay * bw + az * bx;
out[2] = az * bw - ay * bx;
out[3] = aw * bw - ax * bx;
return out;
}
/**
* Rotates a quaternion by the given angle about the Y axis
*
* @param {quat} out quat receiving operation result
* @param {ReadonlyQuat} a quat to rotate
* @param {number} rad angle (in radians) to rotate
* @returns {quat} out
*/
function rotateY(out, a, rad) {
rad *= 0.5;
var ax = a[0], ay = a[1], az = a[2], aw = a[3];
var by = Math.sin(rad), bw = Math.cos(rad);
out[0] = ax * bw - az * by;
out[1] = ay * bw + aw * by;
out[2] = az * bw + ax * by;
out[3] = aw * bw - ay * by;
return out;
}
/**
* Rotates a quaternion by the given angle about the Z axis
*
* @param {quat} out quat receiving operation result
* @param {ReadonlyQuat} a quat to rotate
* @param {number} rad angle (in radians) to rotate
* @returns {quat} out
*/
function rotateZ(out, a, rad) {
rad *= 0.5;
var ax = a[0], ay = a[1], az = a[2], aw = a[3];
var bz = Math.sin(rad), bw = Math.cos(rad);
out[0] = ax * bw + ay * bz;
out[1] = ay * bw - ax * bz;
out[2] = az * bw + aw * bz;
out[3] = aw * bw - az * bz;
return out;
}
/**
* Performs a spherical linear interpolation between two quat
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a the first operand
* @param {ReadonlyQuat} b the second operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {quat} out
*/
function slerp$1(out, a, b, t) {
// benchmarks:
// http://jsperf.com/quaternion-slerp-implementations
var ax = a[0], ay = a[1], az = a[2], aw = a[3];
var bx = b[0], by = b[1], bz = b[2], bw = b[3];
var omega, cosom, sinom, scale0, scale1;
// calc cosine
cosom