UNPKG

mapbox-gl

Version:
2,102 lines (1,968 loc) 16.1 MB
/* Mapbox GL JS is Copyright © 2020 Mapbox and subject to the Mapbox Terms of Service ((https://www.mapbox.com/legal/tos/). */ (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : typeof define === 'function' && define.amd ? define(factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.mapboxgl = factory()); })(this, (function () { 'use strict'; /* eslint-disable */ var shared, worker, mapboxgl; // define gets called three times: one for each chunk. we rely on the order // they're imported to know which is which function define(_, chunk) { if (!shared) { shared = chunk; } else if (!worker) { worker = chunk; } else { var workerBundleString = "self.onerror = function() { console.error('An error occurred while parsing the WebWorker bundle. This is most likely due to improper transpilation by Babel; please see https://docs.mapbox.com/mapbox-gl-js/guides/install/#transpiling'); }; var sharedChunk = {}; (" + shared + ")(sharedChunk); (" + worker + ")(sharedChunk); self.onerror = null;" var sharedChunk = {}; shared(sharedChunk); mapboxgl = chunk(sharedChunk); if (typeof window !== 'undefined' && window && window.URL && window.URL.createObjectURL) { mapboxgl.workerUrl = window.URL.createObjectURL(new Blob([workerBundleString], { type: 'text/javascript' })); } } } define(['exports'], (function (exports) { 'use strict'; /** * Common utilities * @module glMatrix */ // Configuration Constants var EPSILON = 0.000001; var ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array; var RANDOM = Math.random; /** * Sets the type of array used when creating new vectors and matrices * * @param {Float32ArrayConstructor | ArrayConstructor} type Array type, such as Float32Array or Array */ function setMatrixArrayType(type) { ARRAY_TYPE = type; } var degree = Math.PI / 180; /** * Convert Degree To Radian * * @param {Number} a Angle in Degrees */ function toRadian(a) { return a * degree; } /** * Tests whether or not the arguments have approximately the same value, within an absolute * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less * than or equal to 1.0, and a relative tolerance is used for larger values) * * @param {Number} a The first number to test. * @param {Number} b The second number to test. * @returns {Boolean} True if the numbers are approximately equal, false otherwise. */ function equals$b(a, b) { return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b)); } if (!Math.hypot) Math.hypot = function () { var y = 0, i = arguments.length; while (i--) { y += arguments[i] * arguments[i]; } return Math.sqrt(y); }; var common = /*#__PURE__*/Object.freeze({ __proto__: null, get ARRAY_TYPE () { return ARRAY_TYPE; }, EPSILON: EPSILON, RANDOM: RANDOM, equals: equals$b, setMatrixArrayType: setMatrixArrayType, toRadian: toRadian }); /** * 2x2 Matrix * @module mat2 */ /** * Creates a new identity mat2 * * @returns {mat2} a new 2x2 matrix */ function create$8() { var out = new ARRAY_TYPE(4); if (ARRAY_TYPE != Float32Array) { out[1] = 0; out[2] = 0; } out[0] = 1; out[3] = 1; return out; } /** * Creates a new mat2 initialized with values from an existing matrix * * @param {ReadonlyMat2} a matrix to clone * @returns {mat2} a new 2x2 matrix */ function clone$9(a) { var out = new ARRAY_TYPE(4); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } /** * Copy the values from one mat2 to another * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the source matrix * @returns {mat2} out */ function copy$8(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } /** * Set a mat2 to the identity matrix * * @param {mat2} out the receiving matrix * @returns {mat2} out */ function identity$6(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 1; return out; } /** * Create a new mat2 with the given values * * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m10 Component in column 1, row 0 position (index 2) * @param {Number} m11 Component in column 1, row 1 position (index 3) * @returns {mat2} out A new 2x2 matrix */ function fromValues$8(m00, m01, m10, m11) { var out = new ARRAY_TYPE(4); out[0] = m00; out[1] = m01; out[2] = m10; out[3] = m11; return out; } /** * Set the components of a mat2 to the given values * * @param {mat2} out the receiving matrix * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m10 Component in column 1, row 0 position (index 2) * @param {Number} m11 Component in column 1, row 1 position (index 3) * @returns {mat2} out */ function set$8(out, m00, m01, m10, m11) { out[0] = m00; out[1] = m01; out[2] = m10; out[3] = m11; return out; } /** * Transpose the values of a mat2 * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the source matrix * @returns {mat2} out */ function transpose$2(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache // some values if (out === a) { var a1 = a[1]; out[1] = a[2]; out[2] = a1; } else { out[0] = a[0]; out[1] = a[2]; out[2] = a[1]; out[3] = a[3]; } return out; } /** * Inverts a mat2 * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the source matrix * @returns {mat2} out */ function invert$5(out, a) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; // Calculate the determinant var det = a0 * a3 - a2 * a1; if (!det) { return null; } det = 1.0 / det; out[0] = a3 * det; out[1] = -a1 * det; out[2] = -a2 * det; out[3] = a0 * det; return out; } /** * Calculates the adjugate of a mat2 * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the source matrix * @returns {mat2} out */ function adjoint$2(out, a) { // Caching this value is nessecary if out == a var a0 = a[0]; out[0] = a[3]; out[1] = -a[1]; out[2] = -a[2]; out[3] = a0; return out; } /** * Calculates the determinant of a mat2 * * @param {ReadonlyMat2} a the source matrix * @returns {Number} determinant of a */ function determinant$3(a) { return a[0] * a[3] - a[2] * a[1]; } /** * Multiplies two mat2's * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the first operand * @param {ReadonlyMat2} b the second operand * @returns {mat2} out */ function multiply$8(out, a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = a0 * b0 + a2 * b1; out[1] = a1 * b0 + a3 * b1; out[2] = a0 * b2 + a2 * b3; out[3] = a1 * b2 + a3 * b3; return out; } /** * Rotates a mat2 by the given angle * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat2} out */ function rotate$5(out, a, rad) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var s = Math.sin(rad); var c = Math.cos(rad); out[0] = a0 * c + a2 * s; out[1] = a1 * c + a3 * s; out[2] = a0 * -s + a2 * c; out[3] = a1 * -s + a3 * c; return out; } /** * Scales the mat2 by the dimensions in the given vec2 * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the matrix to rotate * @param {ReadonlyVec2} v the vec2 to scale the matrix by * @returns {mat2} out **/ function scale$8(out, a, v) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var v0 = v[0], v1 = v[1]; out[0] = a0 * v0; out[1] = a1 * v0; out[2] = a2 * v1; out[3] = a3 * v1; return out; } /** * Creates a matrix from a given angle * This is equivalent to (but much faster than): * * mat2.identity(dest); * mat2.rotate(dest, dest, rad); * * @param {mat2} out mat2 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat2} out */ function fromRotation$4(out, rad) { var s = Math.sin(rad); var c = Math.cos(rad); out[0] = c; out[1] = s; out[2] = -s; out[3] = c; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat2.identity(dest); * mat2.scale(dest, dest, vec); * * @param {mat2} out mat2 receiving operation result * @param {ReadonlyVec2} v Scaling vector * @returns {mat2} out */ function fromScaling$3(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = v[1]; return out; } /** * Returns a string representation of a mat2 * * @param {ReadonlyMat2} a matrix to represent as a string * @returns {String} string representation of the matrix */ function str$8(a) { return "mat2(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ")"; } /** * Returns Frobenius norm of a mat2 * * @param {ReadonlyMat2} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ function frob$3(a) { return Math.hypot(a[0], a[1], a[2], a[3]); } /** * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix * @param {ReadonlyMat2} L the lower triangular matrix * @param {ReadonlyMat2} D the diagonal matrix * @param {ReadonlyMat2} U the upper triangular matrix * @param {ReadonlyMat2} a the input matrix to factorize */ function LDU(L, D, U, a) { L[2] = a[2] / a[0]; U[0] = a[0]; U[1] = a[1]; U[3] = a[3] - L[2] * U[1]; return [L, D, U]; } /** * Adds two mat2's * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the first operand * @param {ReadonlyMat2} b the second operand * @returns {mat2} out */ function add$8(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; return out; } /** * Subtracts matrix b from matrix a * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the first operand * @param {ReadonlyMat2} b the second operand * @returns {mat2} out */ function subtract$6(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; return out; } /** * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) * * @param {ReadonlyMat2} a The first matrix. * @param {ReadonlyMat2} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ function exactEquals$8(a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3]; } /** * Returns whether or not the matrices have approximately the same elements in the same position. * * @param {ReadonlyMat2} a The first matrix. * @param {ReadonlyMat2} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ function equals$a(a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; return Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)); } /** * Multiply each element of the matrix by a scalar. * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the matrix to scale * @param {Number} b amount to scale the matrix's elements by * @returns {mat2} out */ function multiplyScalar$3(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; return out; } /** * Adds two mat2's after multiplying each element of the second operand by a scalar value. * * @param {mat2} out the receiving vector * @param {ReadonlyMat2} a the first operand * @param {ReadonlyMat2} b the second operand * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat2} out */ function multiplyScalarAndAdd$3(out, a, b, scale) { out[0] = a[0] + b[0] * scale; out[1] = a[1] + b[1] * scale; out[2] = a[2] + b[2] * scale; out[3] = a[3] + b[3] * scale; return out; } /** * Alias for {@link mat2.multiply} * @function */ var mul$8 = multiply$8; /** * Alias for {@link mat2.subtract} * @function */ var sub$6 = subtract$6; var mat2 = /*#__PURE__*/Object.freeze({ __proto__: null, LDU: LDU, add: add$8, adjoint: adjoint$2, clone: clone$9, copy: copy$8, create: create$8, determinant: determinant$3, equals: equals$a, exactEquals: exactEquals$8, frob: frob$3, fromRotation: fromRotation$4, fromScaling: fromScaling$3, fromValues: fromValues$8, identity: identity$6, invert: invert$5, mul: mul$8, multiply: multiply$8, multiplyScalar: multiplyScalar$3, multiplyScalarAndAdd: multiplyScalarAndAdd$3, rotate: rotate$5, scale: scale$8, set: set$8, str: str$8, sub: sub$6, subtract: subtract$6, transpose: transpose$2 }); /** * 2x3 Matrix * @module mat2d * @description * A mat2d contains six elements defined as: * <pre> * [a, b, * c, d, * tx, ty] * </pre> * This is a short form for the 3x3 matrix: * <pre> * [a, b, 0, * c, d, 0, * tx, ty, 1] * </pre> * The last column is ignored so the array is shorter and operations are faster. */ /** * Creates a new identity mat2d * * @returns {mat2d} a new 2x3 matrix */ function create$7() { var out = new ARRAY_TYPE(6); if (ARRAY_TYPE != Float32Array) { out[1] = 0; out[2] = 0; out[4] = 0; out[5] = 0; } out[0] = 1; out[3] = 1; return out; } /** * Creates a new mat2d initialized with values from an existing matrix * * @param {ReadonlyMat2d} a matrix to clone * @returns {mat2d} a new 2x3 matrix */ function clone$8(a) { var out = new ARRAY_TYPE(6); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; return out; } /** * Copy the values from one mat2d to another * * @param {mat2d} out the receiving matrix * @param {ReadonlyMat2d} a the source matrix * @returns {mat2d} out */ function copy$7(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; return out; } /** * Set a mat2d to the identity matrix * * @param {mat2d} out the receiving matrix * @returns {mat2d} out */ function identity$5(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 1; out[4] = 0; out[5] = 0; return out; } /** * Create a new mat2d with the given values * * @param {Number} a Component A (index 0) * @param {Number} b Component B (index 1) * @param {Number} c Component C (index 2) * @param {Number} d Component D (index 3) * @param {Number} tx Component TX (index 4) * @param {Number} ty Component TY (index 5) * @returns {mat2d} A new mat2d */ function fromValues$7(a, b, c, d, tx, ty) { var out = new ARRAY_TYPE(6); out[0] = a; out[1] = b; out[2] = c; out[3] = d; out[4] = tx; out[5] = ty; return out; } /** * Set the components of a mat2d to the given values * * @param {mat2d} out the receiving matrix * @param {Number} a Component A (index 0) * @param {Number} b Component B (index 1) * @param {Number} c Component C (index 2) * @param {Number} d Component D (index 3) * @param {Number} tx Component TX (index 4) * @param {Number} ty Component TY (index 5) * @returns {mat2d} out */ function set$7(out, a, b, c, d, tx, ty) { out[0] = a; out[1] = b; out[2] = c; out[3] = d; out[4] = tx; out[5] = ty; return out; } /** * Inverts a mat2d * * @param {mat2d} out the receiving matrix * @param {ReadonlyMat2d} a the source matrix * @returns {mat2d} out */ function invert$4(out, a) { var aa = a[0], ab = a[1], ac = a[2], ad = a[3]; var atx = a[4], aty = a[5]; var det = aa * ad - ab * ac; if (!det) { return null; } det = 1.0 / det; out[0] = ad * det; out[1] = -ab * det; out[2] = -ac * det; out[3] = aa * det; out[4] = (ac * aty - ad * atx) * det; out[5] = (ab * atx - aa * aty) * det; return out; } /** * Calculates the determinant of a mat2d * * @param {ReadonlyMat2d} a the source matrix * @returns {Number} determinant of a */ function determinant$2(a) { return a[0] * a[3] - a[1] * a[2]; } /** * Multiplies two mat2d's * * @param {mat2d} out the receiving matrix * @param {ReadonlyMat2d} a the first operand * @param {ReadonlyMat2d} b the second operand * @returns {mat2d} out */ function multiply$7(out, a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5]; out[0] = a0 * b0 + a2 * b1; out[1] = a1 * b0 + a3 * b1; out[2] = a0 * b2 + a2 * b3; out[3] = a1 * b2 + a3 * b3; out[4] = a0 * b4 + a2 * b5 + a4; out[5] = a1 * b4 + a3 * b5 + a5; return out; } /** * Rotates a mat2d by the given angle * * @param {mat2d} out the receiving matrix * @param {ReadonlyMat2d} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat2d} out */ function rotate$4(out, a, rad) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5]; var s = Math.sin(rad); var c = Math.cos(rad); out[0] = a0 * c + a2 * s; out[1] = a1 * c + a3 * s; out[2] = a0 * -s + a2 * c; out[3] = a1 * -s + a3 * c; out[4] = a4; out[5] = a5; return out; } /** * Scales the mat2d by the dimensions in the given vec2 * * @param {mat2d} out the receiving matrix * @param {ReadonlyMat2d} a the matrix to translate * @param {ReadonlyVec2} v the vec2 to scale the matrix by * @returns {mat2d} out **/ function scale$7(out, a, v) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5]; var v0 = v[0], v1 = v[1]; out[0] = a0 * v0; out[1] = a1 * v0; out[2] = a2 * v1; out[3] = a3 * v1; out[4] = a4; out[5] = a5; return out; } /** * Translates the mat2d by the dimensions in the given vec2 * * @param {mat2d} out the receiving matrix * @param {ReadonlyMat2d} a the matrix to translate * @param {ReadonlyVec2} v the vec2 to translate the matrix by * @returns {mat2d} out **/ function translate$4(out, a, v) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5]; var v0 = v[0], v1 = v[1]; out[0] = a0; out[1] = a1; out[2] = a2; out[3] = a3; out[4] = a0 * v0 + a2 * v1 + a4; out[5] = a1 * v0 + a3 * v1 + a5; return out; } /** * Creates a matrix from a given angle * This is equivalent to (but much faster than): * * mat2d.identity(dest); * mat2d.rotate(dest, dest, rad); * * @param {mat2d} out mat2d receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat2d} out */ function fromRotation$3(out, rad) { var s = Math.sin(rad), c = Math.cos(rad); out[0] = c; out[1] = s; out[2] = -s; out[3] = c; out[4] = 0; out[5] = 0; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat2d.identity(dest); * mat2d.scale(dest, dest, vec); * * @param {mat2d} out mat2d receiving operation result * @param {ReadonlyVec2} v Scaling vector * @returns {mat2d} out */ function fromScaling$2(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = v[1]; out[4] = 0; out[5] = 0; return out; } /** * Creates a matrix from a vector translation * This is equivalent to (but much faster than): * * mat2d.identity(dest); * mat2d.translate(dest, dest, vec); * * @param {mat2d} out mat2d receiving operation result * @param {ReadonlyVec2} v Translation vector * @returns {mat2d} out */ function fromTranslation$3(out, v) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 1; out[4] = v[0]; out[5] = v[1]; return out; } /** * Returns a string representation of a mat2d * * @param {ReadonlyMat2d} a matrix to represent as a string * @returns {String} string representation of the matrix */ function str$7(a) { return "mat2d(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ", " + a[4] + ", " + a[5] + ")"; } /** * Returns Frobenius norm of a mat2d * * @param {ReadonlyMat2d} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ function frob$2(a) { return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], 1); } /** * Adds two mat2d's * * @param {mat2d} out the receiving matrix * @param {ReadonlyMat2d} a the first operand * @param {ReadonlyMat2d} b the second operand * @returns {mat2d} out */ function add$7(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; out[5] = a[5] + b[5]; return out; } /** * Subtracts matrix b from matrix a * * @param {mat2d} out the receiving matrix * @param {ReadonlyMat2d} a the first operand * @param {ReadonlyMat2d} b the second operand * @returns {mat2d} out */ function subtract$5(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; out[4] = a[4] - b[4]; out[5] = a[5] - b[5]; return out; } /** * Multiply each element of the matrix by a scalar. * * @param {mat2d} out the receiving matrix * @param {ReadonlyMat2d} a the matrix to scale * @param {Number} b amount to scale the matrix's elements by * @returns {mat2d} out */ function multiplyScalar$2(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; out[4] = a[4] * b; out[5] = a[5] * b; return out; } /** * Adds two mat2d's after multiplying each element of the second operand by a scalar value. * * @param {mat2d} out the receiving vector * @param {ReadonlyMat2d} a the first operand * @param {ReadonlyMat2d} b the second operand * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat2d} out */ function multiplyScalarAndAdd$2(out, a, b, scale) { out[0] = a[0] + b[0] * scale; out[1] = a[1] + b[1] * scale; out[2] = a[2] + b[2] * scale; out[3] = a[3] + b[3] * scale; out[4] = a[4] + b[4] * scale; out[5] = a[5] + b[5] * scale; return out; } /** * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) * * @param {ReadonlyMat2d} a The first matrix. * @param {ReadonlyMat2d} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ function exactEquals$7(a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5]; } /** * Returns whether or not the matrices have approximately the same elements in the same position. * * @param {ReadonlyMat2d} a The first matrix. * @param {ReadonlyMat2d} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ function equals$9(a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5]; return Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)); } /** * Alias for {@link mat2d.multiply} * @function */ var mul$7 = multiply$7; /** * Alias for {@link mat2d.subtract} * @function */ var sub$5 = subtract$5; var mat2d = /*#__PURE__*/Object.freeze({ __proto__: null, add: add$7, clone: clone$8, copy: copy$7, create: create$7, determinant: determinant$2, equals: equals$9, exactEquals: exactEquals$7, frob: frob$2, fromRotation: fromRotation$3, fromScaling: fromScaling$2, fromTranslation: fromTranslation$3, fromValues: fromValues$7, identity: identity$5, invert: invert$4, mul: mul$7, multiply: multiply$7, multiplyScalar: multiplyScalar$2, multiplyScalarAndAdd: multiplyScalarAndAdd$2, rotate: rotate$4, scale: scale$7, set: set$7, str: str$7, sub: sub$5, subtract: subtract$5, translate: translate$4 }); /** * 3x3 Matrix * @module mat3 */ /** * Creates a new identity mat3 * * @returns {mat3} a new 3x3 matrix */ function create$6() { var out = new ARRAY_TYPE(9); if (ARRAY_TYPE != Float32Array) { out[1] = 0; out[2] = 0; out[3] = 0; out[5] = 0; out[6] = 0; out[7] = 0; } out[0] = 1; out[4] = 1; out[8] = 1; return out; } /** * Copies the upper-left 3x3 values into the given mat3. * * @param {mat3} out the receiving 3x3 matrix * @param {ReadonlyMat4} a the source 4x4 matrix * @returns {mat3} out */ function fromMat4$1(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[4]; out[4] = a[5]; out[5] = a[6]; out[6] = a[8]; out[7] = a[9]; out[8] = a[10]; return out; } /** * Creates a new mat3 initialized with values from an existing matrix * * @param {ReadonlyMat3} a matrix to clone * @returns {mat3} a new 3x3 matrix */ function clone$7(a) { var out = new ARRAY_TYPE(9); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; } /** * Copy the values from one mat3 to another * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the source matrix * @returns {mat3} out */ function copy$6(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; } /** * Create a new mat3 with the given values * * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m10 Component in column 1, row 0 position (index 3) * @param {Number} m11 Component in column 1, row 1 position (index 4) * @param {Number} m12 Component in column 1, row 2 position (index 5) * @param {Number} m20 Component in column 2, row 0 position (index 6) * @param {Number} m21 Component in column 2, row 1 position (index 7) * @param {Number} m22 Component in column 2, row 2 position (index 8) * @returns {mat3} A new mat3 */ function fromValues$6(m00, m01, m02, m10, m11, m12, m20, m21, m22) { var out = new ARRAY_TYPE(9); out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m10; out[4] = m11; out[5] = m12; out[6] = m20; out[7] = m21; out[8] = m22; return out; } /** * Set the components of a mat3 to the given values * * @param {mat3} out the receiving matrix * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m10 Component in column 1, row 0 position (index 3) * @param {Number} m11 Component in column 1, row 1 position (index 4) * @param {Number} m12 Component in column 1, row 2 position (index 5) * @param {Number} m20 Component in column 2, row 0 position (index 6) * @param {Number} m21 Component in column 2, row 1 position (index 7) * @param {Number} m22 Component in column 2, row 2 position (index 8) * @returns {mat3} out */ function set$6(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) { out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m10; out[4] = m11; out[5] = m12; out[6] = m20; out[7] = m21; out[8] = m22; return out; } /** * Set a mat3 to the identity matrix * * @param {mat3} out the receiving matrix * @returns {mat3} out */ function identity$4(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 1; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Transpose the values of a mat3 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the source matrix * @returns {mat3} out */ function transpose$1(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { var a01 = a[1], a02 = a[2], a12 = a[5]; out[1] = a[3]; out[2] = a[6]; out[3] = a01; out[5] = a[7]; out[6] = a02; out[7] = a12; } else { out[0] = a[0]; out[1] = a[3]; out[2] = a[6]; out[3] = a[1]; out[4] = a[4]; out[5] = a[7]; out[6] = a[2]; out[7] = a[5]; out[8] = a[8]; } return out; } /** * Inverts a mat3 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the source matrix * @returns {mat3} out */ function invert$3(out, a) { var a00 = a[0], a01 = a[1], a02 = a[2]; var a10 = a[3], a11 = a[4], a12 = a[5]; var a20 = a[6], a21 = a[7], a22 = a[8]; var b01 = a22 * a11 - a12 * a21; var b11 = -a22 * a10 + a12 * a20; var b21 = a21 * a10 - a11 * a20; // Calculate the determinant var det = a00 * b01 + a01 * b11 + a02 * b21; if (!det) { return null; } det = 1.0 / det; out[0] = b01 * det; out[1] = (-a22 * a01 + a02 * a21) * det; out[2] = (a12 * a01 - a02 * a11) * det; out[3] = b11 * det; out[4] = (a22 * a00 - a02 * a20) * det; out[5] = (-a12 * a00 + a02 * a10) * det; out[6] = b21 * det; out[7] = (-a21 * a00 + a01 * a20) * det; out[8] = (a11 * a00 - a01 * a10) * det; return out; } /** * Calculates the adjugate of a mat3 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the source matrix * @returns {mat3} out */ function adjoint$1(out, a) { var a00 = a[0], a01 = a[1], a02 = a[2]; var a10 = a[3], a11 = a[4], a12 = a[5]; var a20 = a[6], a21 = a[7], a22 = a[8]; out[0] = a11 * a22 - a12 * a21; out[1] = a02 * a21 - a01 * a22; out[2] = a01 * a12 - a02 * a11; out[3] = a12 * a20 - a10 * a22; out[4] = a00 * a22 - a02 * a20; out[5] = a02 * a10 - a00 * a12; out[6] = a10 * a21 - a11 * a20; out[7] = a01 * a20 - a00 * a21; out[8] = a00 * a11 - a01 * a10; return out; } /** * Calculates the determinant of a mat3 * * @param {ReadonlyMat3} a the source matrix * @returns {Number} determinant of a */ function determinant$1(a) { var a00 = a[0], a01 = a[1], a02 = a[2]; var a10 = a[3], a11 = a[4], a12 = a[5]; var a20 = a[6], a21 = a[7], a22 = a[8]; return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20); } /** * Multiplies two mat3's * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the first operand * @param {ReadonlyMat3} b the second operand * @returns {mat3} out */ function multiply$6(out, a, b) { var a00 = a[0], a01 = a[1], a02 = a[2]; var a10 = a[3], a11 = a[4], a12 = a[5]; var a20 = a[6], a21 = a[7], a22 = a[8]; var b00 = b[0], b01 = b[1], b02 = b[2]; var b10 = b[3], b11 = b[4], b12 = b[5]; var b20 = b[6], b21 = b[7], b22 = b[8]; out[0] = b00 * a00 + b01 * a10 + b02 * a20; out[1] = b00 * a01 + b01 * a11 + b02 * a21; out[2] = b00 * a02 + b01 * a12 + b02 * a22; out[3] = b10 * a00 + b11 * a10 + b12 * a20; out[4] = b10 * a01 + b11 * a11 + b12 * a21; out[5] = b10 * a02 + b11 * a12 + b12 * a22; out[6] = b20 * a00 + b21 * a10 + b22 * a20; out[7] = b20 * a01 + b21 * a11 + b22 * a21; out[8] = b20 * a02 + b21 * a12 + b22 * a22; return out; } /** * Translate a mat3 by the given vector * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the matrix to translate * @param {ReadonlyVec2} v vector to translate by * @returns {mat3} out */ function translate$3(out, a, v) { var a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], x = v[0], y = v[1]; out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a10; out[4] = a11; out[5] = a12; out[6] = x * a00 + y * a10 + a20; out[7] = x * a01 + y * a11 + a21; out[8] = x * a02 + y * a12 + a22; return out; } /** * Rotates a mat3 by the given angle * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat3} out */ function rotate$3(out, a, rad) { var a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], s = Math.sin(rad), c = Math.cos(rad); out[0] = c * a00 + s * a10; out[1] = c * a01 + s * a11; out[2] = c * a02 + s * a12; out[3] = c * a10 - s * a00; out[4] = c * a11 - s * a01; out[5] = c * a12 - s * a02; out[6] = a20; out[7] = a21; out[8] = a22; return out; } /** * Scales the mat3 by the dimensions in the given vec2 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the matrix to rotate * @param {ReadonlyVec2} v the vec2 to scale the matrix by * @returns {mat3} out **/ function scale$6(out, a, v) { var x = v[0], y = v[1]; out[0] = x * a[0]; out[1] = x * a[1]; out[2] = x * a[2]; out[3] = y * a[3]; out[4] = y * a[4]; out[5] = y * a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; } /** * Creates a matrix from a vector translation * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.translate(dest, dest, vec); * * @param {mat3} out mat3 receiving operation result * @param {ReadonlyVec2} v Translation vector * @returns {mat3} out */ function fromTranslation$2(out, v) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 1; out[5] = 0; out[6] = v[0]; out[7] = v[1]; out[8] = 1; return out; } /** * Creates a matrix from a given angle * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.rotate(dest, dest, rad); * * @param {mat3} out mat3 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat3} out */ function fromRotation$2(out, rad) { var s = Math.sin(rad), c = Math.cos(rad); out[0] = c; out[1] = s; out[2] = 0; out[3] = -s; out[4] = c; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.scale(dest, dest, vec); * * @param {mat3} out mat3 receiving operation result * @param {ReadonlyVec2} v Scaling vector * @returns {mat3} out */ function fromScaling$1(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = v[1]; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Copies the values from a mat2d into a mat3 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat2d} a the matrix to copy * @returns {mat3} out **/ function fromMat2d(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = 0; out[3] = a[2]; out[4] = a[3]; out[5] = 0; out[6] = a[4]; out[7] = a[5]; out[8] = 1; return out; } /** * Calculates a 3x3 matrix from the given quaternion * * @param {mat3} out mat3 receiving operation result * @param {ReadonlyQuat} q Quaternion to create matrix from * * @returns {mat3} out */ function fromQuat$1(out, q) { var x = q[0], y = q[1], z = q[2], w = q[3]; var x2 = x + x; var y2 = y + y; var z2 = z + z; var xx = x * x2; var yx = y * x2; var yy = y * y2; var zx = z * x2; var zy = z * y2; var zz = z * z2; var wx = w * x2; var wy = w * y2; var wz = w * z2; out[0] = 1 - yy - zz; out[3] = yx - wz; out[6] = zx + wy; out[1] = yx + wz; out[4] = 1 - xx - zz; out[7] = zy - wx; out[2] = zx - wy; out[5] = zy + wx; out[8] = 1 - xx - yy; return out; } /** * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix * * @param {mat3} out mat3 receiving operation result * @param {ReadonlyMat4} a Mat4 to derive the normal matrix from * * @returns {mat3} out */ function normalFromMat4(out, a) { var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; var a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; var a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; var a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; var b00 = a00 * a11 - a01 * a10; var b01 = a00 * a12 - a02 * a10; var b02 = a00 * a13 - a03 * a10; var b03 = a01 * a12 - a02 * a11; var b04 = a01 * a13 - a03 * a11; var b05 = a02 * a13 - a03 * a12; var b06 = a20 * a31 - a21 * a30; var b07 = a20 * a32 - a22 * a30; var b08 = a20 * a33 - a23 * a30; var b09 = a21 * a32 - a22 * a31; var b10 = a21 * a33 - a23 * a31; var b11 = a22 * a33 - a23 * a32; // Calculate the determinant var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; if (!det) { return null; } det = 1.0 / det; out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det; out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det; out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det; out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det; out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det; out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det; out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det; out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det; return out; } /** * Generates a 2D projection matrix with the given bounds * * @param {mat3} out mat3 frustum matrix will be written into * @param {number} width Width of your gl context * @param {number} height Height of gl context * @returns {mat3} out */ function projection(out, width, height) { out[0] = 2 / width; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = -2 / height; out[5] = 0; out[6] = -1; out[7] = 1; out[8] = 1; return out; } /** * Returns a string representation of a mat3 * * @param {ReadonlyMat3} a matrix to represent as a string * @returns {String} string representation of the matrix */ function str$6(a) { return "mat3(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ", " + a[4] + ", " + a[5] + ", " + a[6] + ", " + a[7] + ", " + a[8] + ")"; } /** * Returns Frobenius norm of a mat3 * * @param {ReadonlyMat3} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ function frob$1(a) { return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]); } /** * Adds two mat3's * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the first operand * @param {ReadonlyMat3} b the second operand * @returns {mat3} out */ function add$6(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; out[5] = a[5] + b[5]; out[6] = a[6] + b[6]; out[7] = a[7] + b[7]; out[8] = a[8] + b[8]; return out; } /** * Subtracts matrix b from matrix a * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the first operand * @param {ReadonlyMat3} b the second operand * @returns {mat3} out */ function subtract$4(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; out[4] = a[4] - b[4]; out[5] = a[5] - b[5]; out[6] = a[6] - b[6]; out[7] = a[7] - b[7]; out[8] = a[8] - b[8]; return out; } /** * Multiply each element of the matrix by a scalar. * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the matrix to scale * @param {Number} b amount to scale the matrix's elements by * @returns {mat3} out */ function multiplyScalar$1(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; out[4] = a[4] * b; out[5] = a[5] * b; out[6] = a[6] * b; out[7] = a[7] * b; out[8] = a[8] * b; return out; } /** * Adds two mat3's after multiplying each element of the second operand by a scalar value. * * @param {mat3} out the receiving vector * @param {ReadonlyMat3} a the first operand * @param {ReadonlyMat3} b the second operand * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat3} out */ function multiplyScalarAndAdd$1(out, a, b, scale) { out[0] = a[0] + b[0] * scale; out[1] = a[1] + b[1] * scale; out[2] = a[2] + b[2] * scale; out[3] = a[3] + b[3] * scale; out[4] = a[4] + b[4] * scale; out[5] = a[5] + b[5] * scale; out[6] = a[6] + b[6] * scale; out[7] = a[7] + b[7] * scale; out[8] = a[8] + b[8] * scale; return out; } /** * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) * * @param {ReadonlyMat3} a The first matrix. * @param {ReadonlyMat3} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ function exactEquals$6(a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8]; } /** * Returns whether or not the matrices have approximately the same elements in the same position. * * @param {ReadonlyMat3} a The first matrix. * @param {ReadonlyMat3} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ function equals$8(a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7], a8 = a[8]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5], b6 = b[6], b7 = b[7], b8 = b[8]; return Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)); } /** * Alias for {@link mat3.multiply} * @function */ var mul$6 = multiply$6; /** * Alias for {@link mat3.subtract} * @function */ var sub$4 = subtract$4; var mat3 = /*#__PURE__*/Object.freeze({ __proto__: null, add: add$6, adjoint: adjoint$1, clone: clone$7, copy: copy$6, create: create$6, determinant: determinant$1, equals: equals$8, exactEquals: exactEquals$6, frob: frob$1, fromMat2d: fromMat2d, fromMat4: fromMat4$1, fromQuat: fromQuat$1, fromRotation: fromRotation$2, fromScaling: fromScaling$1, fromTranslation: fromTranslation$2, fromValues: fromValues$6, identity: identity$4, invert: invert$3, mul: mul$6, multiply: multiply$6, multiplyScalar: multiplyScalar$1, multiplyScalarAndAdd: multiplyScalarAndAdd$1, normalFromMat4: normalFromMat4, projection: projection, rotate: rotate$3, scale: scale$6, set: set$6, str: str$6, sub: sub$4, subtract: subtract$4, translate: translate$3, transpose: transpose$1 }); /** * 4x4 Matrix<br>Format: column-major, when typed out it looks like row-major<br>The matrices are being post multiplied. * @module mat4 */ /** * Creates a new identity mat4 * * @returns {mat4} a new 4x4 matrix */ function create$5() { var out = new ARRAY_TYPE(16); if (ARRAY_TYPE != Float32Array) { out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; } out[0] = 1; out[5] = 1; out[10] = 1; out[15] = 1; return out; } /** * Creates a new mat4 initialized with values from an existing matrix * * @param {ReadonlyMat4} a matrix to clone * @returns {mat4} a new 4x4 matrix */ function clone$6(a) { var out = new ARRAY_TYPE(16); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } /** * Copy the values from one mat4 to another * * @param {mat4} out the receiving matrix * @param {ReadonlyMat4} a the source matrix * @returns {mat4} out */ function copy$5(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } /** * Create a new mat4 with the given values * * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m03 Component in column 0, row 3 position (index 3) * @param {Number} m10 Component in column 1, row 0 position (index 4) * @param {Number} m11 Component in column 1, row 1 position (index 5) * @param {Number} m12 Component in column 1, row 2 position (index 6) * @param {Number} m13 Component in column 1, row 3 position (index 7) * @param {Number} m20 Component in column 2, row 0 position (index 8) * @param {Number} m21 Component in column 2, row 1 position (index 9) * @param {Number} m22 Component in column 2, row 2 position (index 10) * @param {Number} m23 Component in column 2, row 3 position (index 11) * @param {Number} m30 Component in column 3, row 0 position (index 12) * @param {Number} m31 Component in column 3, row 1 position (index 13) * @param {Number} m32 Component in column 3, row 2 position (index 14) * @param {Number} m33 Component in column 3, row 3 position (index 15) * @returns {mat4} A new mat4 */ function fromValues$5(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { var out = new ARRAY_TYPE(16); out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m03; out[4] = m10; out[5] = m11; out[6] = m12; out[7] = m13; out[8] = m20; out[9] = m21; out[10] = m22; out[11] = m23; out[12] = m30; out[13] = m31; out[14] = m32; out[15] = m33; return out; } /** * Set the components of a mat4 to the given values * * @param {mat4} out the receiving matrix * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m03 Component in column 0, row 3 position (index 3) * @param {Number} m10 Component in column 1, row 0 position (index 4) * @param {Number} m11 Component in column 1, row 1 position (index 5) * @param {Number} m12 Component in column 1, row 2 position (index 6) * @param {Number} m13 Component in column 1, row 3 position (index 7) * @param {Number} m20 Component in column 2, row 0 position (index 8) * @param {Number} m21 Component in column 2, row 1 position (index 9) * @param {Number} m22 Component in column 2, row 2 position (index 10) * @param {Number} m23 Component in column 2, row 3 position (index 11) * @param {Number} m30 Component in column 3, row 0 position (index 12) * @param {Number} m31 Component in column 3, row 1 position (index 13) * @param {Number} m32 Component in column 3, row 2 position (index 14) * @param {Number} m33 Component in column 3, row 3 position (index 15) * @returns {mat4} out */ function set$5(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m03; out[4] = m10; out[5] = m11; out[6] = m12; out[7] = m13; out[8] = m20; out[9] = m21; out[10] = m22; out[11] = m23; out[12] = m30; out[13] = m31; out[14] = m32; out[15] = m33; return out; } /** * Set a mat4 to the identity matrix * * @param {mat4} out the receiving matrix * @returns {mat4} out */ function identity$3(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Transpose the values of a mat4 * * @param {mat4} out the receiving matrix * @param {ReadonlyMat4} a the source matrix * @returns {mat4} out */ function transpose(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { var a01 = a[1], a02 = a[2], a03 = a[3]; var a12 = a[6], a13 = a[7]; var a23 = a[11]; out[1] = a[4]; out[