mapbox-gl
Version:
A WebGL interactive maps library
373 lines (325 loc) • 17.4 kB
JavaScript
// @flow
import Point from '@mapbox/point-geometry';
import * as intersectionTests from '../util/intersection_tests';
import Grid from './grid_index';
import { mat4 } from 'gl-matrix';
import * as projection from '../symbol/projection';
import type Transform from '../geo/transform';
import type {SingleCollisionBox} from '../data/bucket/symbol_bucket';
import type {
GlyphOffsetArray,
SymbolLineVertexArray
} from '../data/array_types';
// When a symbol crosses the edge that causes it to be included in
// collision detection, it will cause changes in the symbols around
// it. This constant specifies how many pixels to pad the edge of
// the viewport for collision detection so that the bulk of the changes
// occur offscreen. Making this constant greater increases label
// stability, but it's expensive.
const viewportPadding = 100;
/**
* A collision index used to prevent symbols from overlapping. It keep tracks of
* where previous symbols have been placed and is used to check if a new
* symbol overlaps with any previously added symbols.
*
* There are two steps to insertion: first placeCollisionBox/Circles checks if
* there's room for a symbol, then insertCollisionBox/Circles actually puts the
* symbol in the index. The two step process allows paired symbols to be inserted
* together even if they overlap.
*
* @private
*/
class CollisionIndex {
grid: Grid;
ignoredGrid: Grid;
transform: Transform;
pitchfactor: number;
screenRightBoundary: number;
screenBottomBoundary: number;
gridRightBoundary: number;
gridBottomBoundary: number;
constructor(
transform: Transform,
grid: Grid = new Grid(transform.width + 2 * viewportPadding, transform.height + 2 * viewportPadding, 25),
ignoredGrid: Grid = new Grid(transform.width + 2 * viewportPadding, transform.height + 2 * viewportPadding, 25)
) {
this.transform = transform;
this.grid = grid;
this.ignoredGrid = ignoredGrid;
this.pitchfactor = Math.cos(transform._pitch) * transform.cameraToCenterDistance;
this.screenRightBoundary = transform.width + viewportPadding;
this.screenBottomBoundary = transform.height + viewportPadding;
this.gridRightBoundary = transform.width + 2 * viewportPadding;
this.gridBottomBoundary = transform.height + 2 * viewportPadding;
}
placeCollisionBox(collisionBox: SingleCollisionBox, allowOverlap: boolean, textPixelRatio: number, posMatrix: mat4, collisionGroupPredicate?: any): { box: Array<number>, offscreen: boolean } {
const projectedPoint = this.projectAndGetPerspectiveRatio(posMatrix, collisionBox.anchorPointX, collisionBox.anchorPointY);
const tileToViewport = textPixelRatio * projectedPoint.perspectiveRatio;
const tlX = collisionBox.x1 * tileToViewport + projectedPoint.point.x;
const tlY = collisionBox.y1 * tileToViewport + projectedPoint.point.y;
const brX = collisionBox.x2 * tileToViewport + projectedPoint.point.x;
const brY = collisionBox.y2 * tileToViewport + projectedPoint.point.y;
if (!this.isInsideGrid(tlX, tlY, brX, brY) ||
(!allowOverlap && this.grid.hitTest(tlX, tlY, brX, brY, collisionGroupPredicate))) {
return {
box: [],
offscreen: false
};
}
return {
box: [tlX, tlY, brX, brY],
offscreen: this.isOffscreen(tlX, tlY, brX, brY)
};
}
approximateTileDistance(tileDistance: any, lastSegmentAngle: number, pixelsToTileUnits: number, cameraToAnchorDistance: number, pitchWithMap: boolean): number {
// This is a quick and dirty solution for chosing which collision circles to use (since collision circles are
// laid out in tile units). Ideally, I think we should generate collision circles on the fly in viewport coordinates
// at the time we do collision detection.
// See https://github.com/mapbox/mapbox-gl-js/issues/5474
// incidenceStretch is the ratio of how much y space a label takes up on a tile while drawn perpendicular to the viewport vs
// how much space it would take up if it were drawn flat on the tile
// Using law of sines, camera_to_anchor/sin(ground_angle) = camera_to_center/sin(incidence_angle)
// Incidence angle 90 -> head on, sin(incidence_angle) = 1, no stretch
// Incidence angle 1 -> very oblique, sin(incidence_angle) =~ 0, lots of stretch
// ground_angle = u_pitch + PI/2 -> sin(ground_angle) = cos(u_pitch)
// incidenceStretch = 1 / sin(incidenceAngle)
const incidenceStretch = pitchWithMap ? 1 : cameraToAnchorDistance / this.pitchfactor;
const lastSegmentTile = tileDistance.lastSegmentViewportDistance * pixelsToTileUnits;
return tileDistance.prevTileDistance +
lastSegmentTile +
(incidenceStretch - 1) * lastSegmentTile * Math.abs(Math.sin(lastSegmentAngle));
}
placeCollisionCircles(collisionCircles: Array<number>,
allowOverlap: boolean,
scale: number,
textPixelRatio: number,
symbol: any,
lineVertexArray: SymbolLineVertexArray,
glyphOffsetArray: GlyphOffsetArray,
fontSize: number,
posMatrix: mat4,
labelPlaneMatrix: mat4,
showCollisionCircles: boolean,
pitchWithMap: boolean,
collisionGroupPredicate?: any): { circles: Array<number>, offscreen: boolean } {
const placedCollisionCircles = [];
const projectedAnchor = this.projectAnchor(posMatrix, symbol.anchorX, symbol.anchorY);
const projectionCache = {};
const fontScale = fontSize / 24;
const lineOffsetX = symbol.lineOffsetX * fontSize;
const lineOffsetY = symbol.lineOffsetY * fontSize;
const tileUnitAnchorPoint = new Point(symbol.anchorX, symbol.anchorY);
// projection.project generates NDC coordinates, as opposed to the
// pixel-based grid coordinates generated by this.projectPoint
const labelPlaneAnchorPoint =
projection.project(tileUnitAnchorPoint, labelPlaneMatrix).point;
const firstAndLastGlyph = projection.placeFirstAndLastGlyph(
fontScale,
glyphOffsetArray,
lineOffsetX,
lineOffsetY,
/*flip*/ false,
labelPlaneAnchorPoint,
tileUnitAnchorPoint,
symbol,
lineVertexArray,
labelPlaneMatrix,
projectionCache,
/*return tile distance*/ true);
let collisionDetected = false;
let inGrid = false;
let entirelyOffscreen = true;
const tileToViewport = projectedAnchor.perspectiveRatio * textPixelRatio;
// pixelsToTileUnits is used for translating line geometry to tile units
// ... so we care about 'scale' but not 'perspectiveRatio'
// equivalent to pixel_to_tile_units
const pixelsToTileUnits = 1 / (textPixelRatio * scale);
let firstTileDistance = 0, lastTileDistance = 0;
if (firstAndLastGlyph) {
firstTileDistance = this.approximateTileDistance(firstAndLastGlyph.first.tileDistance, firstAndLastGlyph.first.angle, pixelsToTileUnits, projectedAnchor.cameraDistance, pitchWithMap);
lastTileDistance = this.approximateTileDistance(firstAndLastGlyph.last.tileDistance, firstAndLastGlyph.last.angle, pixelsToTileUnits, projectedAnchor.cameraDistance, pitchWithMap);
}
for (let k = 0; k < collisionCircles.length; k += 5) {
const anchorPointX = collisionCircles[k];
const anchorPointY = collisionCircles[k + 1];
const tileUnitRadius = collisionCircles[k + 2];
const boxSignedDistanceFromAnchor = collisionCircles[k + 3];
if (!firstAndLastGlyph ||
(boxSignedDistanceFromAnchor < -firstTileDistance) ||
(boxSignedDistanceFromAnchor > lastTileDistance)) {
// The label either doesn't fit on its line or we
// don't need to use this circle because the label
// doesn't extend this far. Either way, mark the circle unused.
markCollisionCircleUsed(collisionCircles, k, false);
continue;
}
const projectedPoint = this.projectPoint(posMatrix, anchorPointX, anchorPointY);
const radius = tileUnitRadius * tileToViewport;
const atLeastOneCirclePlaced = placedCollisionCircles.length > 0;
if (atLeastOneCirclePlaced) {
const dx = projectedPoint.x - placedCollisionCircles[placedCollisionCircles.length - 4];
const dy = projectedPoint.y - placedCollisionCircles[placedCollisionCircles.length - 3];
// The circle edges touch when the distance between their centers is 2x the radius
// When the distance is 1x the radius, they're doubled up, and we could remove
// every other circle while keeping them all in touch.
// We actually start removing circles when the distance is √2x the radius:
// thinning the number of circles as much as possible is a major performance win,
// and the small gaps introduced don't make a very noticeable difference.
const placedTooDensely = radius * radius * 2 > dx * dx + dy * dy;
if (placedTooDensely) {
const atLeastOneMoreCircle = (k + 8) < collisionCircles.length;
if (atLeastOneMoreCircle) {
const nextBoxDistanceToAnchor = collisionCircles[k + 8];
if ((nextBoxDistanceToAnchor > -firstTileDistance) &&
(nextBoxDistanceToAnchor < lastTileDistance)) {
// Hide significantly overlapping circles, unless this is the last one we can
// use, in which case we want to keep it in place even if it's tightly packed
// with the one before it.
markCollisionCircleUsed(collisionCircles, k, false);
continue;
}
}
}
}
const collisionBoxArrayIndex = k / 5;
placedCollisionCircles.push(projectedPoint.x, projectedPoint.y, radius, collisionBoxArrayIndex);
markCollisionCircleUsed(collisionCircles, k, true);
const x1 = projectedPoint.x - radius;
const y1 = projectedPoint.y - radius;
const x2 = projectedPoint.x + radius;
const y2 = projectedPoint.y + radius;
entirelyOffscreen = entirelyOffscreen && this.isOffscreen(x1, y1, x2, y2);
inGrid = inGrid || this.isInsideGrid(x1, y1, x2, y2);
if (!allowOverlap) {
if (this.grid.hitTestCircle(projectedPoint.x, projectedPoint.y, radius, collisionGroupPredicate)) {
if (!showCollisionCircles) {
return {
circles: [],
offscreen: false
};
} else {
// Don't early exit if we're showing the debug circles because we still want to calculate
// which circles are in use
collisionDetected = true;
}
}
}
}
return {
circles: (collisionDetected || !inGrid) ? [] : placedCollisionCircles,
offscreen: entirelyOffscreen
};
}
/**
* Because the geometries in the CollisionIndex are an approximation of the shape of
* symbols on the map, we use the CollisionIndex to look up the symbol part of
* `queryRenderedFeatures`.
*
* @private
*/
queryRenderedSymbols(viewportQueryGeometry: Array<Point>) {
if (viewportQueryGeometry.length === 0 || (this.grid.keysLength() === 0 && this.ignoredGrid.keysLength() === 0)) {
return {};
}
const query = [];
let minX = Infinity;
let minY = Infinity;
let maxX = -Infinity;
let maxY = -Infinity;
for (const point of viewportQueryGeometry) {
const gridPoint = new Point(point.x + viewportPadding, point.y + viewportPadding);
minX = Math.min(minX, gridPoint.x);
minY = Math.min(minY, gridPoint.y);
maxX = Math.max(maxX, gridPoint.x);
maxY = Math.max(maxY, gridPoint.y);
query.push(gridPoint);
}
const features = this.grid.query(minX, minY, maxX, maxY)
.concat(this.ignoredGrid.query(minX, minY, maxX, maxY));
const seenFeatures = {};
const result = {};
for (const feature of features) {
const featureKey = feature.key;
// Skip already seen features.
if (seenFeatures[featureKey.bucketInstanceId] === undefined) {
seenFeatures[featureKey.bucketInstanceId] = {};
}
if (seenFeatures[featureKey.bucketInstanceId][featureKey.featureIndex]) {
continue;
}
// Check if query intersects with the feature box
// "Collision Circles" for line labels are treated as boxes here
// Since there's no actual collision taking place, the circle vs. square
// distinction doesn't matter as much, and box geometry is easier
// to work with.
const bbox = [
new Point(feature.x1, feature.y1),
new Point(feature.x2, feature.y1),
new Point(feature.x2, feature.y2),
new Point(feature.x1, feature.y2)
];
if (!intersectionTests.polygonIntersectsPolygon(query, bbox)) {
continue;
}
seenFeatures[featureKey.bucketInstanceId][featureKey.featureIndex] = true;
if (result[featureKey.bucketInstanceId] === undefined) {
result[featureKey.bucketInstanceId] = [];
}
result[featureKey.bucketInstanceId].push(featureKey.featureIndex);
}
return result;
}
insertCollisionBox(collisionBox: Array<number>, ignorePlacement: boolean, bucketInstanceId: number, featureIndex: number, collisionGroupID: number) {
const grid = ignorePlacement ? this.ignoredGrid : this.grid;
const key = { bucketInstanceId, featureIndex, collisionGroupID };
grid.insert(key, collisionBox[0], collisionBox[1], collisionBox[2], collisionBox[3]);
}
insertCollisionCircles(collisionCircles: Array<number>, ignorePlacement: boolean, bucketInstanceId: number, featureIndex: number, collisionGroupID: number) {
const grid = ignorePlacement ? this.ignoredGrid : this.grid;
const key = { bucketInstanceId, featureIndex, collisionGroupID };
for (let k = 0; k < collisionCircles.length; k += 4) {
grid.insertCircle(key, collisionCircles[k], collisionCircles[k + 1], collisionCircles[k + 2]);
}
}
projectAnchor(posMatrix: mat4, x: number, y: number) {
const p = [x, y, 0, 1];
projection.xyTransformMat4(p, p, posMatrix);
return {
perspectiveRatio: 0.5 + 0.5 * (this.transform.cameraToCenterDistance / p[3]),
cameraDistance: p[3]
};
}
projectPoint(posMatrix: mat4, x: number, y: number) {
const p = [x, y, 0, 1];
projection.xyTransformMat4(p, p, posMatrix);
return new Point(
(((p[0] / p[3] + 1) / 2) * this.transform.width) + viewportPadding,
(((-p[1] / p[3] + 1) / 2) * this.transform.height) + viewportPadding
);
}
projectAndGetPerspectiveRatio(posMatrix: mat4, x: number, y: number) {
const p = [x, y, 0, 1];
projection.xyTransformMat4(p, p, posMatrix);
const a = new Point(
(((p[0] / p[3] + 1) / 2) * this.transform.width) + viewportPadding,
(((-p[1] / p[3] + 1) / 2) * this.transform.height) + viewportPadding
);
return {
point: a,
// See perspective ratio comment in symbol_sdf.vertex
// We're doing collision detection in viewport space so we need
// to scale down boxes in the distance
perspectiveRatio: 0.5 + 0.5 * (this.transform.cameraToCenterDistance / p[3])
};
}
isOffscreen(x1: number, y1: number, x2: number, y2: number) {
return x2 < viewportPadding || x1 >= this.screenRightBoundary || y2 < viewportPadding || y1 > this.screenBottomBoundary;
}
isInsideGrid(x1: number, y1: number, x2: number, y2: number) {
return x2 >= 0 && x1 < this.gridRightBoundary && y2 >= 0 && y1 < this.gridBottomBoundary;
}
}
function markCollisionCircleUsed(collisionCircles: Array<number>, index: number, used: boolean) {
collisionCircles[index + 4] = used ? 1 : 0;
}
export default CollisionIndex;