UNPKG

manyfest

Version:

JSON Object Manifest for Data Description and Parsing

348 lines (317 loc) 15.1 kB
/** * @author <steven@velozo.com> */ const libSimpleLog = require('./Manyfest-LogToConsole.js'); // This is for resolving functions mid-address const libGetObjectValue = require('./Manyfest-ObjectAddress-GetValue.js'); // TODO: Just until this is a fable service. let _MockFable = { DataFormat: require('./Manyfest-ObjectAddress-Parser.js') }; /** * Object Address Resolver * * IMPORTANT NOTE: This code is intentionally more verbose than necessary, to * be extremely clear what is going on in the recursion for * each of the three address resolution functions. * * Although there is some opportunity to repeat ourselves a * bit less in this codebase (e.g. with detection of arrays * versus objects versus direct properties), it can make * debugging.. challenging. The minified version of the code * optimizes out almost anything repeated in here. So please * be kind and rewind... meaning please keep the codebase less * terse and more verbose so humans can comprehend it. * * * @class ManyfestObjectAddressResolverCheckAddressExists */ class ManyfestObjectAddressResolverCheckAddressExists { constructor(pInfoLog, pErrorLog) { // Wire in logging this.logInfo = (typeof(pInfoLog) == 'function') ? pInfoLog : libSimpleLog; this.logError = (typeof(pErrorLog) == 'function') ? pErrorLog : libSimpleLog; this.getObjectValueClass = new libGetObjectValue(this.logInfo, this.logError); } // Check if an address exists. // // This is necessary because the getValueAtAddress function is ambiguous on // whether the element/property is actually there or not (it returns // undefined whether the property exists or not). This function checks for // existance and returns true or false dependent. checkAddressExists (pObject, pAddress, pRootObject) { // TODO: Should these throw an error? // Make sure pObject is an object if (typeof(pObject) != 'object') return false; // Make sure pAddress is a string if (typeof(pAddress) != 'string') return false; // Set the root object to the passed-in object if it isn't set yet. This is expected to be the root object. // NOTE: This was added to support functions mid-stream let tmpRootObject = (typeof(pRootObject) == 'undefined') ? pObject : pRootObject; // DONE: Make this work for things like SomeRootObject.Metadata["Some.People.Use.Bad.Object.Property.Names"] let tmpAddressPartBeginning = _MockFable.DataFormat.stringGetFirstSegment(pAddress); // This is the terminal address string (no more dots so the RECUSION ENDS IN HERE somehow) if (tmpAddressPartBeginning.length == pAddress.length) { // Check if the address refers to a boxed property let tmpBracketStartIndex = pAddress.indexOf('['); let tmpBracketStopIndex = pAddress.indexOf(']'); // Check if there is a function somewhere in the address... parenthesis start should only be in a function let tmpFunctionStartIndex = pAddress.indexOf('('); // NOTE THAT FUNCTIONS MUST RESOLVE FIRST // Functions look like this // MyFunction() // MyFunction(Some.Address) // MyFunction(Some.Address,Some.Other.Address) // MyFunction(Some.Address,Some.Other.Address,Some.Third.Address) // // This could be enhanced to allow purely numeric and string values to be passed to the function. For now, // To heck with that. This is a simple function call. // // The requirements to detect a function are: // 1) The start bracket is after character 0 if ((tmpFunctionStartIndex > 0) // 2) The end bracket is after the start bracket && (_MockFable.DataFormat.stringCountEnclosures(pAddress) > 0)) { let tmpFunctionAddress = pAddress.substring(0, tmpFunctionStartIndex).trim(); if (((tmpFunctionAddress in pObject)) && (typeof(pObject[tmpFunctionAddress]) == 'function')) { return true; } else { // The address suggests it is a function, but it is not. return false; } } // Boxed elements look like this: // MyValues[10] // MyValues['Name'] // MyValues["Age"] // MyValues[`Cost`] // // When we are passed SomeObject["Name"] this code below recurses as if it were SomeObject.Name // The requirements to detect a boxed element are: // 1) The start bracket is after character 0 else if ((tmpBracketStartIndex > 0) // 2) The end bracket has something between them && (tmpBracketStopIndex > tmpBracketStartIndex) // 3) There is data && (tmpBracketStopIndex - tmpBracketStartIndex > 1)) { // The "Name" of the Object contained too the left of the bracket let tmpBoxedPropertyName = pAddress.substring(0, tmpBracketStartIndex).trim(); // If the subproperty doesn't test as a proper Object, none of the rest of this is possible. // This is a rare case where Arrays testing as Objects is useful if (typeof(pObject[tmpBoxedPropertyName]) !== 'object') { return false; } // The "Reference" to the property within it, either an array element or object property let tmpBoxedPropertyReference = pAddress.substring(tmpBracketStartIndex+1, tmpBracketStopIndex).trim(); // Attempt to parse the reference as a number, which will be used as an array element let tmpBoxedPropertyNumber = parseInt(tmpBoxedPropertyReference, 10); // Guard: If the referrant is a number and the boxed property is not an array, or vice versa, return undefined. // This seems confusing to me at first read, so explaination: // Is the Boxed Object an Array? TRUE // And is the Reference inside the boxed Object not a number? TRUE // --> So when these are in agreement, it's an impossible access state if (Array.isArray(pObject[tmpBoxedPropertyName]) == isNaN(tmpBoxedPropertyNumber)) { return false; } // 4) If the middle part is *only* a number (no single, double or backtick quotes) it is an array element, // otherwise we will try to treat it as a dynamic object property. if (isNaN(tmpBoxedPropertyNumber)) { // This isn't a number ... let's treat it as a dynamic object property. // We would expect the property to be wrapped in some kind of quotes so strip them tmpBoxedPropertyReference = this.cleanWrapCharacters('"', tmpBoxedPropertyReference); tmpBoxedPropertyReference = this.cleanWrapCharacters('`', tmpBoxedPropertyReference); tmpBoxedPropertyReference = this.cleanWrapCharacters("'", tmpBoxedPropertyReference); // Check if the property exists. return (tmpBoxedPropertyReference in pObject[tmpBoxedPropertyName]); } else { // Use the new in operator to see if the element is in the array return (tmpBoxedPropertyNumber in pObject[tmpBoxedPropertyName]); } } else { // Check if the property exists return (pAddress in pObject); } } else { let tmpSubObjectName = tmpAddressPartBeginning; let tmpNewAddress = pAddress.substring(tmpAddressPartBeginning.length+1); // Test if the tmpNewAddress is an array or object // Check if it's a boxed property let tmpBracketStartIndex = tmpSubObjectName.indexOf('['); let tmpBracketStopIndex = tmpSubObjectName.indexOf(']'); // Check if there is a function somewhere in the address... parenthesis start should only be in a function let tmpFunctionStartIndex = tmpSubObjectName.indexOf('('); // NOTE THAT FUNCTIONS MUST RESOLVE FIRST // Functions look like this // MyFunction() // MyFunction(Some.Address) // MyFunction(Some.Address,Some.Other.Address) // MyFunction(Some.Address,Some.Other.Address,Some.Third.Address) // // This could be enhanced to allow purely numeric and string values to be passed to the function. For now, // To heck with that. This is a simple function call. // // The requirements to detect a function are: // 1) The start bracket is after character 0 if ((tmpFunctionStartIndex > 0) // 2) The end bracket is after the start bracket && (_MockFable.DataFormat.stringCountEnclosures(tmpSubObjectName) > 0)) { let tmpFunctionAddress = tmpSubObjectName.substring(0, tmpFunctionStartIndex).trim(); //tmpParentAddress = `${tmpParentAddress}${(tmpParentAddress.length > 0) ? '.' : ''}${tmpSubObjectName}`; if (!typeof(pObject[tmpFunctionAddress]) == 'function') { // The address suggests it is a function, but it is not. return false; } // Now see if the function has arguments. // Implementation notes: * ARGUMENTS MUST SHARE THE SAME ROOT OBJECT CONTEXT * let tmpFunctionArguments = _MockFable.DataFormat.stringGetSegments(_MockFable.DataFormat.stringGetEnclosureValueByIndex(tmpSubObjectName.substring(tmpFunctionAddress.length), 0), ','); if ((tmpFunctionArguments.length == 0) || (tmpFunctionArguments[0] == '')) { // No arguments... just call the function (bound to the scope of the object it is contained withing) if (tmpFunctionAddress in pObject) { try { return this.checkAddressExists(pObject[tmpFunctionAddress].apply(pObject), tmpNewAddress, tmpRootObject); } catch(pError) { // The function call failed, so the address doesn't exist libSimpleLog.log(`Error calling function ${tmpFunctionAddress} (address [${pAddress}]): ${pError.message}`); return false; } } else { // The function doesn't exist, so the address doesn't exist libSimpleLog.log(`Function ${tmpFunctionAddress} does not exist (address [${pAddress}])`); return false; } } else { let tmpArgumentValues = []; let tmpRootObject = (typeof(pRootObject) == 'undefined') ? pObject : pRootObject; // Now get the value for each argument for (let i = 0; i < tmpFunctionArguments.length; i++) { // Resolve the values for each subsequent entry // NOTE: This is where the resolves get really tricky. Recursion within recursion. Programming gom jabbar, yo. tmpArgumentValues.push(this.getObjectValueClass.getValueAtAddress(tmpRootObject, tmpFunctionArguments[i])); } //return this.checkAddressExists(pObject[tmpFunctionAddress].apply(pObject, tmpArgumentValues), tmpNewAddress, tmpRootObject); if (tmpFunctionAddress in pObject) { try { return this.checkAddressExists(pObject[tmpFunctionAddress].apply(pObject, tmpArgumentValues), tmpNewAddress, tmpRootObject); } catch(pError) { // The function call failed, so the address doesn't exist libSimpleLog.log(`Error calling function ${tmpFunctionAddress} (address [${pAddress}]): ${pError.message}`); return false; } } else { // The function doesn't exist, so the address doesn't exist libSimpleLog.log(`Function ${tmpFunctionAddress} does not exist (address [${pAddress}])`); return false; } } } // Boxed elements look like this: // MyValues[42] // MyValues['Color'] // MyValues["Weight"] // MyValues[`Diameter`] // // When we are passed SomeObject["Name"] this code below recurses as if it were SomeObject.Name // The requirements to detect a boxed element are: // 1) The start bracket is after character 0 else if ((tmpBracketStartIndex > 0) // 2) The end bracket has something between them && (tmpBracketStopIndex > tmpBracketStartIndex) // 3) There is data && (tmpBracketStopIndex - tmpBracketStartIndex > 1)) { let tmpBoxedPropertyName = tmpSubObjectName.substring(0, tmpBracketStartIndex).trim(); let tmpBoxedPropertyReference = tmpSubObjectName.substring(tmpBracketStartIndex+1, tmpBracketStopIndex).trim(); let tmpBoxedPropertyNumber = parseInt(tmpBoxedPropertyReference, 10); // Guard: If the referrant is a number and the boxed property is not an array, or vice versa, return undefined. // This seems confusing to me at first read, so explaination: // Is the Boxed Object an Array? TRUE // And is the Reference inside the boxed Object not a number? TRUE // --> So when these are in agreement, it's an impossible access state // This could be a failure in the recursion chain because they passed something like this in: // StudentData.Sections.Algebra.Students[1].Tardy // BUT // StudentData.Sections.Algebra.Students is an object, so the [1].Tardy is not possible to access // This could be a failure in the recursion chain because they passed something like this in: // StudentData.Sections.Algebra.Students["JaneDoe"].Grade // BUT // StudentData.Sections.Algebra.Students is an array, so the ["JaneDoe"].Grade is not possible to access // TODO: Should this be an error or something? Should we keep a log of failures like this? if (Array.isArray(pObject[tmpBoxedPropertyName]) == isNaN(tmpBoxedPropertyNumber)) { // Because this is an impossible address, the property doesn't exist // TODO: Should we throw an error in this condition? return false; } //This is a bracketed value // 4) If the middle part is *only* a number (no single, double or backtick quotes) it is an array element, // otherwise we will try to reat it as a dynamic object property. if (isNaN(tmpBoxedPropertyNumber)) { // This isn't a number ... let's treat it as a dynanmic object property. tmpBoxedPropertyReference = this.cleanWrapCharacters('"', tmpBoxedPropertyReference); tmpBoxedPropertyReference = this.cleanWrapCharacters('`', tmpBoxedPropertyReference); tmpBoxedPropertyReference = this.cleanWrapCharacters("'", tmpBoxedPropertyReference); // Recurse directly into the subobject return this.checkAddressExists(pObject[tmpBoxedPropertyName][tmpBoxedPropertyReference], tmpNewAddress, tmpRootObject); } else { // We parsed a valid number out of the boxed property name, so recurse into the array return this.checkAddressExists(pObject[tmpBoxedPropertyName][tmpBoxedPropertyNumber], tmpNewAddress, tmpRootObject); } } // If there is an object property already named for the sub object, but it isn't an object // then the system can't set the value in there. Error and abort! if ((tmpSubObjectName in pObject) && typeof(pObject[tmpSubObjectName]) !== 'object') { return false; } else if (tmpSubObjectName in pObject) { // If there is already a subobject pass that to the recursive thingy return this.checkAddressExists(pObject[tmpSubObjectName], tmpNewAddress, tmpRootObject); } else { // Create a subobject and then pass that pObject[tmpSubObjectName] = {}; return this.checkAddressExists(pObject[tmpSubObjectName], tmpNewAddress, tmpRootObject); } } } }; module.exports = ManyfestObjectAddressResolverCheckAddressExists;