mandarjs
Version:
A package to apply interactive effects on images using Three.js
2,817 lines (1,702 loc) • 1.08 MB
JavaScript
/**
* @license
* Copyright 2010-2025 Three.js Authors
* SPDX-License-Identifier: MIT
*/
const REVISION = '173';
const CullFaceNone = 0;
const CullFaceBack = 1;
const CullFaceFront = 2;
const PCFShadowMap = 1;
const PCFSoftShadowMap = 2;
const VSMShadowMap = 3;
const FrontSide = 0;
const BackSide = 1;
const DoubleSide = 2;
const NoBlending = 0;
const NormalBlending = 1;
const AdditiveBlending = 2;
const SubtractiveBlending = 3;
const MultiplyBlending = 4;
const CustomBlending = 5;
const AddEquation = 100;
const SubtractEquation = 101;
const ReverseSubtractEquation = 102;
const MinEquation = 103;
const MaxEquation = 104;
const ZeroFactor = 200;
const OneFactor = 201;
const SrcColorFactor = 202;
const OneMinusSrcColorFactor = 203;
const SrcAlphaFactor = 204;
const OneMinusSrcAlphaFactor = 205;
const DstAlphaFactor = 206;
const OneMinusDstAlphaFactor = 207;
const DstColorFactor = 208;
const OneMinusDstColorFactor = 209;
const SrcAlphaSaturateFactor = 210;
const ConstantColorFactor = 211;
const OneMinusConstantColorFactor = 212;
const ConstantAlphaFactor = 213;
const OneMinusConstantAlphaFactor = 214;
const NeverDepth = 0;
const AlwaysDepth = 1;
const LessDepth = 2;
const LessEqualDepth = 3;
const EqualDepth = 4;
const GreaterEqualDepth = 5;
const GreaterDepth = 6;
const NotEqualDepth = 7;
const MultiplyOperation = 0;
const MixOperation = 1;
const AddOperation = 2;
const NoToneMapping = 0;
const LinearToneMapping = 1;
const ReinhardToneMapping = 2;
const CineonToneMapping = 3;
const ACESFilmicToneMapping = 4;
const CustomToneMapping = 5;
const AgXToneMapping = 6;
const NeutralToneMapping = 7;
const UVMapping = 300;
const CubeReflectionMapping = 301;
const CubeRefractionMapping = 302;
const EquirectangularReflectionMapping = 303;
const EquirectangularRefractionMapping = 304;
const CubeUVReflectionMapping = 306;
const RepeatWrapping = 1000;
const ClampToEdgeWrapping = 1001;
const MirroredRepeatWrapping = 1002;
const NearestFilter = 1003;
const NearestMipmapNearestFilter = 1004;
const NearestMipmapLinearFilter = 1005;
const LinearFilter = 1006;
const LinearMipmapNearestFilter = 1007;
const LinearMipmapLinearFilter = 1008;
const UnsignedByteType = 1009;
const ByteType = 1010;
const ShortType = 1011;
const UnsignedShortType = 1012;
const IntType = 1013;
const UnsignedIntType = 1014;
const FloatType = 1015;
const HalfFloatType = 1016;
const UnsignedShort4444Type = 1017;
const UnsignedShort5551Type = 1018;
const UnsignedInt248Type = 1020;
const UnsignedInt5999Type = 35902;
const AlphaFormat = 1021;
const RGBFormat = 1022;
const RGBAFormat = 1023;
const LuminanceFormat = 1024;
const LuminanceAlphaFormat = 1025;
const DepthFormat = 1026;
const DepthStencilFormat = 1027;
const RedFormat = 1028;
const RedIntegerFormat = 1029;
const RGFormat = 1030;
const RGIntegerFormat = 1031;
const RGBAIntegerFormat = 1033;
const RGB_S3TC_DXT1_Format = 33776;
const RGBA_S3TC_DXT1_Format = 33777;
const RGBA_S3TC_DXT3_Format = 33778;
const RGBA_S3TC_DXT5_Format = 33779;
const RGB_PVRTC_4BPPV1_Format = 35840;
const RGB_PVRTC_2BPPV1_Format = 35841;
const RGBA_PVRTC_4BPPV1_Format = 35842;
const RGBA_PVRTC_2BPPV1_Format = 35843;
const RGB_ETC1_Format = 36196;
const RGB_ETC2_Format = 37492;
const RGBA_ETC2_EAC_Format = 37496;
const RGBA_ASTC_4x4_Format = 37808;
const RGBA_ASTC_5x4_Format = 37809;
const RGBA_ASTC_5x5_Format = 37810;
const RGBA_ASTC_6x5_Format = 37811;
const RGBA_ASTC_6x6_Format = 37812;
const RGBA_ASTC_8x5_Format = 37813;
const RGBA_ASTC_8x6_Format = 37814;
const RGBA_ASTC_8x8_Format = 37815;
const RGBA_ASTC_10x5_Format = 37816;
const RGBA_ASTC_10x6_Format = 37817;
const RGBA_ASTC_10x8_Format = 37818;
const RGBA_ASTC_10x10_Format = 37819;
const RGBA_ASTC_12x10_Format = 37820;
const RGBA_ASTC_12x12_Format = 37821;
const RGBA_BPTC_Format = 36492;
const RGB_BPTC_SIGNED_Format = 36494;
const RGB_BPTC_UNSIGNED_Format = 36495;
const RED_RGTC1_Format = 36283;
const SIGNED_RED_RGTC1_Format = 36284;
const RED_GREEN_RGTC2_Format = 36285;
const SIGNED_RED_GREEN_RGTC2_Format = 36286;
const BasicDepthPacking = 3200;
const RGBADepthPacking = 3201;
const TangentSpaceNormalMap = 0;
const ObjectSpaceNormalMap = 1;
// Color space string identifiers, matching CSS Color Module Level 4 and WebGPU names where available.
const NoColorSpace = '';
const SRGBColorSpace = 'srgb';
const LinearSRGBColorSpace = 'srgb-linear';
const LinearTransfer = 'linear';
const SRGBTransfer = 'srgb';
const KeepStencilOp = 7680;
const AlwaysStencilFunc = 519;
const NeverCompare = 512;
const LessCompare = 513;
const EqualCompare = 514;
const LessEqualCompare = 515;
const GreaterCompare = 516;
const NotEqualCompare = 517;
const GreaterEqualCompare = 518;
const AlwaysCompare = 519;
const StaticDrawUsage = 35044;
const GLSL3 = '300 es';
const WebGLCoordinateSystem = 2000;
const WebGPUCoordinateSystem = 2001;
/**
* https://github.com/mrdoob/eventdispatcher.js/
*/
class EventDispatcher {
addEventListener( type, listener ) {
if ( this._listeners === undefined ) this._listeners = {};
const listeners = this._listeners;
if ( listeners[ type ] === undefined ) {
listeners[ type ] = [];
}
if ( listeners[ type ].indexOf( listener ) === -1 ) {
listeners[ type ].push( listener );
}
}
hasEventListener( type, listener ) {
const listeners = this._listeners;
if ( listeners === undefined ) return false;
return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== -1;
}
removeEventListener( type, listener ) {
const listeners = this._listeners;
if ( listeners === undefined ) return;
const listenerArray = listeners[ type ];
if ( listenerArray !== undefined ) {
const index = listenerArray.indexOf( listener );
if ( index !== -1 ) {
listenerArray.splice( index, 1 );
}
}
}
dispatchEvent( event ) {
const listeners = this._listeners;
if ( listeners === undefined ) return;
const listenerArray = listeners[ event.type ];
if ( listenerArray !== undefined ) {
event.target = this;
// Make a copy, in case listeners are removed while iterating.
const array = listenerArray.slice( 0 );
for ( let i = 0, l = array.length; i < l; i ++ ) {
array[ i ].call( this, event );
}
event.target = null;
}
}
}
const _lut = [ '00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '0a', '0b', '0c', '0d', '0e', '0f', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '1a', '1b', '1c', '1d', '1e', '1f', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '2a', '2b', '2c', '2d', '2e', '2f', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '3a', '3b', '3c', '3d', '3e', '3f', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '4a', '4b', '4c', '4d', '4e', '4f', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '5a', '5b', '5c', '5d', '5e', '5f', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '6a', '6b', '6c', '6d', '6e', '6f', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '7a', '7b', '7c', '7d', '7e', '7f', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '8a', '8b', '8c', '8d', '8e', '8f', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '9a', '9b', '9c', '9d', '9e', '9f', 'a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'aa', 'ab', 'ac', 'ad', 'ae', 'af', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'ba', 'bb', 'bc', 'bd', 'be', 'bf', 'c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'ca', 'cb', 'cc', 'cd', 'ce', 'cf', 'd0', 'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9', 'da', 'db', 'dc', 'dd', 'de', 'df', 'e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'ea', 'eb', 'ec', 'ed', 'ee', 'ef', 'f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'fa', 'fb', 'fc', 'fd', 'fe', 'ff' ];
const DEG2RAD = Math.PI / 180;
const RAD2DEG = 180 / Math.PI;
// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
function generateUUID() {
const d0 = Math.random() * 0xffffffff | 0;
const d1 = Math.random() * 0xffffffff | 0;
const d2 = Math.random() * 0xffffffff | 0;
const d3 = Math.random() * 0xffffffff | 0;
const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' +
_lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' +
_lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] +
_lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ];
// .toLowerCase() here flattens concatenated strings to save heap memory space.
return uuid.toLowerCase();
}
function clamp$1( value, min, max ) {
return Math.max( min, Math.min( max, value ) );
}
// compute euclidean modulo of m % n
// https://en.wikipedia.org/wiki/Modulo_operation
function euclideanModulo( n, m ) {
return ( ( n % m ) + m ) % m;
}
// https://en.wikipedia.org/wiki/Linear_interpolation
function lerp( x, y, t ) {
return ( 1 - t ) * x + t * y;
}
function denormalize( value, array ) {
switch ( array.constructor ) {
case Float32Array:
return value;
case Uint32Array:
return value / 4294967295.0;
case Uint16Array:
return value / 65535.0;
case Uint8Array:
return value / 255.0;
case Int32Array:
return Math.max( value / 2147483647.0, -1 );
case Int16Array:
return Math.max( value / 32767.0, -1 );
case Int8Array:
return Math.max( value / 127.0, -1 );
default:
throw new Error( 'Invalid component type.' );
}
}
function normalize$1( value, array ) {
switch ( array.constructor ) {
case Float32Array:
return value;
case Uint32Array:
return Math.round( value * 4294967295.0 );
case Uint16Array:
return Math.round( value * 65535.0 );
case Uint8Array:
return Math.round( value * 255.0 );
case Int32Array:
return Math.round( value * 2147483647.0 );
case Int16Array:
return Math.round( value * 32767.0 );
case Int8Array:
return Math.round( value * 127.0 );
default:
throw new Error( 'Invalid component type.' );
}
}
class Vector2 {
constructor( x = 0, y = 0 ) {
Vector2.prototype.isVector2 = true;
this.x = x;
this.y = y;
}
get width() {
return this.x;
}
set width( value ) {
this.x = value;
}
get height() {
return this.y;
}
set height( value ) {
this.y = value;
}
set( x, y ) {
this.x = x;
this.y = y;
return this;
}
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
return this;
}
setX( x ) {
this.x = x;
return this;
}
setY( y ) {
this.y = y;
return this;
}
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
}
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
default: throw new Error( 'index is out of range: ' + index );
}
}
clone() {
return new this.constructor( this.x, this.y );
}
copy( v ) {
this.x = v.x;
this.y = v.y;
return this;
}
add( v ) {
this.x += v.x;
this.y += v.y;
return this;
}
addScalar( s ) {
this.x += s;
this.y += s;
return this;
}
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
}
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
return this;
}
sub( v ) {
this.x -= v.x;
this.y -= v.y;
return this;
}
subScalar( s ) {
this.x -= s;
this.y -= s;
return this;
}
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
}
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
return this;
}
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
return this;
}
divide( v ) {
this.x /= v.x;
this.y /= v.y;
return this;
}
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
applyMatrix3( m ) {
const x = this.x, y = this.y;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ];
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];
return this;
}
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
return this;
}
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
return this;
}
clamp( min, max ) {
// assumes min < max, componentwise
this.x = clamp$1( this.x, min.x, max.x );
this.y = clamp$1( this.y, min.y, max.y );
return this;
}
clampScalar( minVal, maxVal ) {
this.x = clamp$1( this.x, minVal, maxVal );
this.y = clamp$1( this.y, minVal, maxVal );
return this;
}
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( clamp$1( length, min, max ) );
}
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
return this;
}
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
return this;
}
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
return this;
}
roundToZero() {
this.x = Math.trunc( this.x );
this.y = Math.trunc( this.y );
return this;
}
negate() {
this.x = - this.x;
this.y = - this.y;
return this;
}
dot( v ) {
return this.x * v.x + this.y * v.y;
}
cross( v ) {
return this.x * v.y - this.y * v.x;
}
lengthSq() {
return this.x * this.x + this.y * this.y;
}
length() {
return Math.sqrt( this.x * this.x + this.y * this.y );
}
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y );
}
normalize() {
return this.divideScalar( this.length() || 1 );
}
angle() {
// computes the angle in radians with respect to the positive x-axis
const angle = Math.atan2( - this.y, - this.x ) + Math.PI;
return angle;
}
angleTo( v ) {
const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );
if ( denominator === 0 ) return Math.PI / 2;
const theta = this.dot( v ) / denominator;
// clamp, to handle numerical problems
return Math.acos( clamp$1( theta, -1, 1 ) );
}
distanceTo( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
}
distanceToSquared( v ) {
const dx = this.x - v.x, dy = this.y - v.y;
return dx * dx + dy * dy;
}
manhattanDistanceTo( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );
}
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
return this;
}
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
return this;
}
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) );
}
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
return array;
}
fromBufferAttribute( attribute, index ) {
this.x = attribute.getX( index );
this.y = attribute.getY( index );
return this;
}
rotateAround( center, angle ) {
const c = Math.cos( angle ), s = Math.sin( angle );
const x = this.x - center.x;
const y = this.y - center.y;
this.x = x * c - y * s + center.x;
this.y = x * s + y * c + center.y;
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
return this;
}
*[ Symbol.iterator ]() {
yield this.x;
yield this.y;
}
}
class Matrix3 {
constructor( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
Matrix3.prototype.isMatrix3 = true;
this.elements = [
1, 0, 0,
0, 1, 0,
0, 0, 1
];
if ( n11 !== undefined ) {
this.set( n11, n12, n13, n21, n22, n23, n31, n32, n33 );
}
}
set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
const te = this.elements;
te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;
return this;
}
identity() {
this.set(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
return this;
}
copy( m ) {
const te = this.elements;
const me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];
return this;
}
extractBasis( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrix3Column( this, 0 );
yAxis.setFromMatrix3Column( this, 1 );
zAxis.setFromMatrix3Column( this, 2 );
return this;
}
setFromMatrix4( m ) {
const me = m.elements;
this.set(
me[ 0 ], me[ 4 ], me[ 8 ],
me[ 1 ], me[ 5 ], me[ 9 ],
me[ 2 ], me[ 6 ], me[ 10 ]
);
return this;
}
multiply( m ) {
return this.multiplyMatrices( this, m );
}
premultiply( m ) {
return this.multiplyMatrices( m, this );
}
multiplyMatrices( a, b ) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];
const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;
return this;
}
multiplyScalar( s ) {
const te = this.elements;
te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;
return this;
}
determinant() {
const te = this.elements;
const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
}
invert() {
const te = this.elements,
n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ],
n12 = te[ 3 ], n22 = te[ 4 ], n32 = te[ 5 ],
n13 = te[ 6 ], n23 = te[ 7 ], n33 = te[ 8 ],
t11 = n33 * n22 - n32 * n23,
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 );
const detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;
te[ 3 ] = t12 * detInv;
te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;
te[ 6 ] = t13 * detInv;
te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;
return this;
}
transpose() {
let tmp;
const m = this.elements;
tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;
return this;
}
getNormalMatrix( matrix4 ) {
return this.setFromMatrix4( matrix4 ).invert().transpose();
}
transposeIntoArray( r ) {
const m = this.elements;
r[ 0 ] = m[ 0 ];
r[ 1 ] = m[ 3 ];
r[ 2 ] = m[ 6 ];
r[ 3 ] = m[ 1 ];
r[ 4 ] = m[ 4 ];
r[ 5 ] = m[ 7 ];
r[ 6 ] = m[ 2 ];
r[ 7 ] = m[ 5 ];
r[ 8 ] = m[ 8 ];
return this;
}
setUvTransform( tx, ty, sx, sy, rotation, cx, cy ) {
const c = Math.cos( rotation );
const s = Math.sin( rotation );
this.set(
sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx,
- sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty,
0, 0, 1
);
return this;
}
//
scale( sx, sy ) {
this.premultiply( _m3.makeScale( sx, sy ) );
return this;
}
rotate( theta ) {
this.premultiply( _m3.makeRotation( - theta ) );
return this;
}
translate( tx, ty ) {
this.premultiply( _m3.makeTranslation( tx, ty ) );
return this;
}
// for 2D Transforms
makeTranslation( x, y ) {
if ( x.isVector2 ) {
this.set(
1, 0, x.x,
0, 1, x.y,
0, 0, 1
);
} else {
this.set(
1, 0, x,
0, 1, y,
0, 0, 1
);
}
return this;
}
makeRotation( theta ) {
// counterclockwise
const c = Math.cos( theta );
const s = Math.sin( theta );
this.set(
c, - s, 0,
s, c, 0,
0, 0, 1
);
return this;
}
makeScale( x, y ) {
this.set(
x, 0, 0,
0, y, 0,
0, 0, 1
);
return this;
}
//
equals( matrix ) {
const te = this.elements;
const me = matrix.elements;
for ( let i = 0; i < 9; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
}
fromArray( array, offset = 0 ) {
for ( let i = 0; i < 9; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
}
toArray( array = [], offset = 0 ) {
const te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
return array;
}
clone() {
return new this.constructor().fromArray( this.elements );
}
}
const _m3 = /*@__PURE__*/ new Matrix3();
function arrayNeedsUint32( array ) {
// assumes larger values usually on last
for ( let i = array.length - 1; i >= 0; -- i ) {
if ( array[ i ] >= 65535 ) return true; // account for PRIMITIVE_RESTART_FIXED_INDEX, #24565
}
return false;
}
function createElementNS( name ) {
return document.createElementNS( 'http://www.w3.org/1999/xhtml', name );
}
function createCanvasElement() {
const canvas = createElementNS( 'canvas' );
canvas.style.display = 'block';
return canvas;
}
const _cache = {};
function warnOnce( message ) {
if ( message in _cache ) return;
_cache[ message ] = true;
console.warn( message );
}
function probeAsync( gl, sync, interval ) {
return new Promise( function ( resolve, reject ) {
function probe() {
switch ( gl.clientWaitSync( sync, gl.SYNC_FLUSH_COMMANDS_BIT, 0 ) ) {
case gl.WAIT_FAILED:
reject();
break;
case gl.TIMEOUT_EXPIRED:
setTimeout( probe, interval );
break;
default:
resolve();
}
}
setTimeout( probe, interval );
} );
}
function toNormalizedProjectionMatrix( projectionMatrix ) {
const m = projectionMatrix.elements;
// Convert [-1, 1] to [0, 1] projection matrix
m[ 2 ] = 0.5 * m[ 2 ] + 0.5 * m[ 3 ];
m[ 6 ] = 0.5 * m[ 6 ] + 0.5 * m[ 7 ];
m[ 10 ] = 0.5 * m[ 10 ] + 0.5 * m[ 11 ];
m[ 14 ] = 0.5 * m[ 14 ] + 0.5 * m[ 15 ];
}
function toReversedProjectionMatrix( projectionMatrix ) {
const m = projectionMatrix.elements;
const isPerspectiveMatrix = m[ 11 ] === -1;
// Reverse [0, 1] projection matrix
if ( isPerspectiveMatrix ) {
m[ 10 ] = - m[ 10 ] - 1;
m[ 14 ] = - m[ 14 ];
} else {
m[ 10 ] = - m[ 10 ];
m[ 14 ] = - m[ 14 ] + 1;
}
}
const LINEAR_REC709_TO_XYZ = /*@__PURE__*/ new Matrix3().set(
0.4123908, 0.3575843, 0.1804808,
0.2126390, 0.7151687, 0.0721923,
0.0193308, 0.1191948, 0.9505322
);
const XYZ_TO_LINEAR_REC709 = /*@__PURE__*/ new Matrix3().set(
3.2409699, -1.5373832, -0.4986108,
-0.9692436, 1.8759675, 0.0415551,
0.0556301, -0.203977, 1.0569715
);
function createColorManagement() {
const ColorManagement = {
enabled: true,
workingColorSpace: LinearSRGBColorSpace,
/**
* Implementations of supported color spaces.
*
* Required:
* - primaries: chromaticity coordinates [ rx ry gx gy bx by ]
* - whitePoint: reference white [ x y ]
* - transfer: transfer function (pre-defined)
* - toXYZ: Matrix3 RGB to XYZ transform
* - fromXYZ: Matrix3 XYZ to RGB transform
* - luminanceCoefficients: RGB luminance coefficients
*
* Optional:
* - outputColorSpaceConfig: { drawingBufferColorSpace: ColorSpace }
* - workingColorSpaceConfig: { unpackColorSpace: ColorSpace }
*
* Reference:
* - https://www.russellcottrell.com/photo/matrixCalculator.htm
*/
spaces: {},
convert: function ( color, sourceColorSpace, targetColorSpace ) {
if ( this.enabled === false || sourceColorSpace === targetColorSpace || ! sourceColorSpace || ! targetColorSpace ) {
return color;
}
if ( this.spaces[ sourceColorSpace ].transfer === SRGBTransfer ) {
color.r = SRGBToLinear( color.r );
color.g = SRGBToLinear( color.g );
color.b = SRGBToLinear( color.b );
}
if ( this.spaces[ sourceColorSpace ].primaries !== this.spaces[ targetColorSpace ].primaries ) {
color.applyMatrix3( this.spaces[ sourceColorSpace ].toXYZ );
color.applyMatrix3( this.spaces[ targetColorSpace ].fromXYZ );
}
if ( this.spaces[ targetColorSpace ].transfer === SRGBTransfer ) {
color.r = LinearToSRGB( color.r );
color.g = LinearToSRGB( color.g );
color.b = LinearToSRGB( color.b );
}
return color;
},
fromWorkingColorSpace: function ( color, targetColorSpace ) {
return this.convert( color, this.workingColorSpace, targetColorSpace );
},
toWorkingColorSpace: function ( color, sourceColorSpace ) {
return this.convert( color, sourceColorSpace, this.workingColorSpace );
},
getPrimaries: function ( colorSpace ) {
return this.spaces[ colorSpace ].primaries;
},
getTransfer: function ( colorSpace ) {
if ( colorSpace === NoColorSpace ) return LinearTransfer;
return this.spaces[ colorSpace ].transfer;
},
getLuminanceCoefficients: function ( target, colorSpace = this.workingColorSpace ) {
return target.fromArray( this.spaces[ colorSpace ].luminanceCoefficients );
},
define: function ( colorSpaces ) {
Object.assign( this.spaces, colorSpaces );
},
// Internal APIs
_getMatrix: function ( targetMatrix, sourceColorSpace, targetColorSpace ) {
return targetMatrix
.copy( this.spaces[ sourceColorSpace ].toXYZ )
.multiply( this.spaces[ targetColorSpace ].fromXYZ );
},
_getDrawingBufferColorSpace: function ( colorSpace ) {
return this.spaces[ colorSpace ].outputColorSpaceConfig.drawingBufferColorSpace;
},
_getUnpackColorSpace: function ( colorSpace = this.workingColorSpace ) {
return this.spaces[ colorSpace ].workingColorSpaceConfig.unpackColorSpace;
}
};
/******************************************************************************
* sRGB definitions
*/
const REC709_PRIMARIES = [ 0.640, 0.330, 0.300, 0.600, 0.150, 0.060 ];
const REC709_LUMINANCE_COEFFICIENTS = [ 0.2126, 0.7152, 0.0722 ];
const D65 = [ 0.3127, 0.3290 ];
ColorManagement.define( {
[ LinearSRGBColorSpace ]: {
primaries: REC709_PRIMARIES,
whitePoint: D65,
transfer: LinearTransfer,
toXYZ: LINEAR_REC709_TO_XYZ,
fromXYZ: XYZ_TO_LINEAR_REC709,
luminanceCoefficients: REC709_LUMINANCE_COEFFICIENTS,
workingColorSpaceConfig: { unpackColorSpace: SRGBColorSpace },
outputColorSpaceConfig: { drawingBufferColorSpace: SRGBColorSpace }
},
[ SRGBColorSpace ]: {
primaries: REC709_PRIMARIES,
whitePoint: D65,
transfer: SRGBTransfer,
toXYZ: LINEAR_REC709_TO_XYZ,
fromXYZ: XYZ_TO_LINEAR_REC709,
luminanceCoefficients: REC709_LUMINANCE_COEFFICIENTS,
outputColorSpaceConfig: { drawingBufferColorSpace: SRGBColorSpace }
},
} );
return ColorManagement;
}
const ColorManagement = /*@__PURE__*/ createColorManagement();
function SRGBToLinear( c ) {
return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 );
}
function LinearToSRGB( c ) {
return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055;
}
let _canvas;
class ImageUtils {
static getDataURL( image ) {
if ( /^data:/i.test( image.src ) ) {
return image.src;
}
if ( typeof HTMLCanvasElement === 'undefined' ) {
return image.src;
}
let canvas;
if ( image instanceof HTMLCanvasElement ) {
canvas = image;
} else {
if ( _canvas === undefined ) _canvas = createElementNS( 'canvas' );
_canvas.width = image.width;
_canvas.height = image.height;
const context = _canvas.getContext( '2d' );
if ( image instanceof ImageData ) {
context.putImageData( image, 0, 0 );
} else {
context.drawImage( image, 0, 0, image.width, image.height );
}
canvas = _canvas;
}
return canvas.toDataURL( 'image/png' );
}
static sRGBToLinear( image ) {
if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) ||
( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) ||
( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) {
const canvas = createElementNS( 'canvas' );
canvas.width = image.width;
canvas.height = image.height;
const context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0, image.width, image.height );
const imageData = context.getImageData( 0, 0, image.width, image.height );
const data = imageData.data;
for ( let i = 0; i < data.length; i ++ ) {
data[ i ] = SRGBToLinear( data[ i ] / 255 ) * 255;
}
context.putImageData( imageData, 0, 0 );
return canvas;
} else if ( image.data ) {
const data = image.data.slice( 0 );
for ( let i = 0; i < data.length; i ++ ) {
if ( data instanceof Uint8Array || data instanceof Uint8ClampedArray ) {
data[ i ] = Math.floor( SRGBToLinear( data[ i ] / 255 ) * 255 );
} else {
// assuming float
data[ i ] = SRGBToLinear( data[ i ] );
}
}
return {
data: data,
width: image.width,
height: image.height
};
} else {
console.warn( 'THREE.ImageUtils.sRGBToLinear(): Unsupported image type. No color space conversion applied.' );
return image;
}
}
}
let _sourceId = 0;
class Source {
constructor( data = null ) {
this.isSource = true;
Object.defineProperty( this, 'id', { value: _sourceId ++ } );
this.uuid = generateUUID();
this.data = data;
this.dataReady = true;
this.version = 0;
}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
toJSON( meta ) {
const isRootObject = ( meta === undefined || typeof meta === 'string' );
if ( ! isRootObject && meta.images[ this.uuid ] !== undefined ) {
return meta.images[ this.uuid ];
}
const output = {
uuid: this.uuid,
url: ''
};
const data = this.data;
if ( data !== null ) {
let url;
if ( Array.isArray( data ) ) {
// cube texture
url = [];
for ( let i = 0, l = data.length; i < l; i ++ ) {
if ( data[ i ].isDataTexture ) {
url.push( serializeImage( data[ i ].image ) );
} else {
url.push( serializeImage( data[ i ] ) );
}
}
} else {
// texture
url = serializeImage( data );
}
output.url = url;
}
if ( ! isRootObject ) {
meta.images[ this.uuid ] = output;
}
return output;
}
}
function serializeImage( image ) {
if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) ||
( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) ||
( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) {
// default images
return ImageUtils.getDataURL( image );
} else {
if ( image.data ) {
// images of DataTexture
return {
data: Array.from( image.data ),
width: image.width,
height: image.height,
type: image.data.constructor.name
};
} else {
console.warn( 'THREE.Texture: Unable to serialize Texture.' );
return {};
}
}
}
let _textureId = 0;
class Texture extends EventDispatcher {
constructor( image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = Texture.DEFAULT_ANISOTROPY, colorSpace = NoColorSpace ) {
super();
this.isTexture = true;
Object.defineProperty( this, 'id', { value: _textureId ++ } );
this.uuid = generateUUID();
this.name = '';
this.source = new Source( image );
this.mipmaps = [];
this.mapping = mapping;
this.channel = 0;
this.wrapS = wrapS;
this.wrapT = wrapT;
this.magFilter = magFilter;
this.minFilter = minFilter;
this.anisotropy = anisotropy;
this.format = format;
this.internalFormat = null;
this.type = type;
this.offset = new Vector2( 0, 0 );
this.repeat = new Vector2( 1, 1 );
this.center = new Vector2( 0, 0 );
this.rotation = 0;
this.matrixAutoUpdate = true;
this.matrix = new Matrix3();
this.generateMipmaps = true;
this.premultiplyAlpha = false;
this.flipY = true;
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
this.colorSpace = colorSpace;
this.userData = {};
this.version = 0;
this.onUpdate = null;
this.renderTarget = null; // assign texture to a render target
this.isRenderTargetTexture = false; // indicates whether a texture belongs to a render target or not
this.pmremVersion = 0; // indicates whether this texture should be processed by PMREMGenerator or not (only relevant for render target textures)
}
get image() {
return this.source.data;
}
set image( value = null ) {
this.source.data = value;
}
updateMatrix() {
this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y );
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.name = source.name;
this.source = source.source;
this.mipmaps = source.mipmaps.slice( 0 );
this.mapping = source.mapping;
this.channel = source.channel;
this.wrapS = source.wrapS;
this.wrapT = source.wrapT;
this.magFilter = source.magFilter;
this.minFilter = source.minFilter;
this.anisotropy = source.anisotropy;
this.format = source.format;
this.internalFormat = source.internalFormat;
this.type = source.type;
this.offset.copy( source.offset );
this.repeat.copy( source.repeat );
this.center.copy( source.center );
this.rotation = source.rotation;
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrix.copy( source.matrix );
this.generateMipmaps = source.generateMipmaps;
this.premultiplyAlpha = source.premultiplyAlpha;
this.flipY = source.flipY;
this.unpackAlignment = source.unpackAlignment;
this.colorSpace = source.colorSpace;
this.renderTarget = source.renderTarget;
this.isRenderTargetTexture = source.isRenderTargetTexture;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
this.needsUpdate = true;
return this;
}
toJSON( meta ) {
const isRootObject = ( meta === undefined || typeof meta === 'string' );
if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) {
return meta.textures[ this.uuid ];
}
const output = {
metadata: {
version: 4.6,
type: 'Texture',
generator: 'Texture.toJSON'
},
uuid: this.uuid,
name: this.name,
image: this.source.toJSON( meta ).uuid,
mapping: this.mapping,
channel: this.channel,
repeat: [ this.repeat.x, this.repeat.y ],
offset: [ this.offset.x, this.offset.y ],
center: [ this.center.x, this.center.y ],
rotation: this.rotation,
wrap: [ this.wrapS, this.wrapT ],
format: this.format,
internalFormat: this.internalFormat,
type: this.type,
colorSpace: this.colorSpace,
minFilter: this.minFilter,
magFilter: this.magFilter,
anisotropy: this.anisotropy,
flipY: this.flipY,
generateMipmaps: this.generateMipmaps,
premultiplyAlpha: this.premultiplyAlpha,
unpackAlignment: this.unpackAlignment
};
if ( Object.keys( this.userData ).length > 0 ) output.userData = this.userData;
if ( ! isRootObject ) {
meta.textures[ this.uuid ] = output;
}
return output;
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
}
transformUv( uv ) {
if ( this.mapping !== UVMapping ) return uv;
uv.applyMatrix3( this.matrix );
if ( uv.x < 0 || uv.x > 1 ) {
switch ( this.wrapS ) {
case RepeatWrapping:
uv.x = uv.x - Math.floor( uv.x );
break;
case ClampToEdgeWrapping:
uv.x = uv.x < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {
uv.x = Math.ceil( uv.x ) - uv.x;
} else {
uv.x = uv.x - Math.floor( uv.x );
}
break;
}
}
if ( uv.y < 0 || uv.y > 1 ) {
switch ( this.wrapT ) {
case RepeatWrapping:
uv.y = uv.y - Math.floor( uv.y );
break;
case ClampToEdgeWrapping:
uv.y = uv.y < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {
uv.y = Math.ceil( uv.y ) - uv.y;
} else {
uv.y = uv.y - Math.floor( uv.y );
}
break;
}
}
if ( this.flipY ) {
uv.y = 1 - uv.y;
}
return uv;
}
set needsUpdate( value ) {
if ( value === true ) {
this.version ++;
this.source.needsUpdate = true;
}
}
set needsPMREMUpdate( value ) {
if ( value === true ) {
this.pmremVersion ++;
}
}
}
Texture.DEFAULT_IMAGE = null;
Texture.DEFAULT_MAPPING = UVMapping;
Texture.DEFAULT_ANISOTROPY = 1;
class Vector4 {
constructor( x = 0, y = 0, z = 0, w = 1 ) {
Vector4.prototype.isVector4 = true;
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
get width() {
return this.z;
}
set width( value ) {
this.z = value;
}
get height() {
return this.w;
}
set height( value ) {
this.w = value;
}
set( x, y, z, w ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
}
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
this.w = scalar;
return this;
}
setX( x ) {
this.x = x;
return this;
}
setY( y ) {
this.y = y;
return this;
}
setZ( z ) {
this.z = z;
return this;
}
setW( w ) {
this.w = w;
return this;
}
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
case 3: this.w = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
}
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
case 3: return this.w;
default: throw new Error( 'index is out of range: ' + index );
}
}
clone() {
return new this.constructor( this.x, this.y, this.z, this.w );
}
copy( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = ( v.w !== undefined ) ? v.w : 1;
return this;
}
add( v ) {
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
}
addScalar( s ) {
this.x += s;
this.y += s;
this.z += s;
this.w += s;
return this;
}
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
}
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
this.w += v.w * s;
return this;
}
sub( v ) {
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
}
subScalar( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
this.w -= s;
return this;
}
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
}
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
this.w *= v.w;
return this;
}
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
return this;
}
applyMatrix4( m ) {
const x = this.x, y = this.y, z = this.z, w = this.w;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
return this;
}
divide( v ) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
this.w /= v.w;
return this;
}
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
setAxisAngleFromQuaternion( q ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
// q is assumed to be normalized
this.w = 2 * Math.acos( q.w );
const s = Math.sqrt( 1 - q.w * q.w );
if ( s < 0.0001 ) {
this.x = 1;
this.y = 0;
this.z = 0;
} else {
this.x = q.x / s;
this.y = q.y / s;
this.z = q.z / s;
}
return this;
}
setAxisAngleFromRotationMatrix( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
let angle, x, y, z; // variables for result
const epsilon = 0.01, // margin to allow for rounding errors
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
( Math.abs( m13 - m31 ) < epsilon ) &&
( Math.abs( m23 - m32 ) < epsilon ) ) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
( Math.abs( m13 + m31 ) < epsilon2 ) &&
( Math.abs( m23 + m32 ) < epsilon2 ) &&
( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
// this singularity is identity matrix so angle = 0
this.set( 1, 0, 0, 0 );
return this; // zero angle, arbitrary axis
}
// otherwise this singularity is angle = 180
angle = Math.PI;
const xx = ( m11 + 1 ) / 2;
const yy = ( m22 + 1 ) / 2;
const zz = ( m33 + 1 ) / 2;
const xy = ( m12 + m21 ) / 4;
const xz = ( m13 + m31 ) / 4;
const yz = ( m23 + m32 ) / 4;
if ( ( xx > yy ) && ( xx > zz ) ) {
// m11 is the largest diagonal term
if ( xx < epsilon ) {
x = 0;
y = 0.707106781;
z = 0.707106781;
} else {
x = Math.sqrt( xx );
y = xy / x;
z = xz / x;
}
} else if ( yy > zz ) {
// m22 is the largest diagonal term
if ( yy < epsilon ) {
x = 0.707106781;
y = 0;
z = 0.707106781;
} else {
y = Math.sqrt( yy );
x = xy / y;
z = yz / y;
}
} else {
// m33 is the largest diagonal term so base result on this
if ( zz < epsilon ) {
x = 0.707106781;
y = 0.707106781;
z = 0;
} else {
z = Math.sqrt( zz );
x = xz / z;
y = yz / z;
}
}
this.set( x, y, z, angle );
return this; // return 180 deg rotation
}
// as we have reached here there are no singularities so we can handle normally
let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
( m13 - m31 ) * ( m13 - m31 ) +
( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
if ( Math.abs( s ) < 0.001 ) s = 1;
// prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I've left it in just in case
this.x = ( m32 - m23 ) / s;
this.y = ( m13 - m31 ) / s;
this.z = ( m21 - m12 ) / s;
this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
return this;
}
setFromMatrixPosition( m ) {
const e = m.elements;
this.x = e[ 12 ];
this.y = e[ 13 ];
this.z = e[ 14 ];
this.w = e[ 15 ];
return this;
}
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
this.w = Math.min( this.w, v.w );
return this;
}
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
this.w = Math.max( this.w, v.w );
return this;
}
clamp( min, max ) {
// assumes min < max, componentwise
this.x = clamp$1( this.x, min.x, max.x );
this.y = clamp$1( this.y, min.y, max.y );
this.z = clamp$1( this.z, min.z, max.z );
this.w = clamp$1( this.w, min.w, max.w );
return this;
}
clampScalar( minVal, maxVal ) {
this.x = clamp$1( this.x, minVal, maxVal );
this.y = clamp$1( this.y, minVal, maxVal );
this.z = clamp$1( this.z, minVal, maxVal );
this.w = clamp$1( this.w, minVal, maxVal );
return this;
}
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( clamp$1( length, min, max ) );
}
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
this.w = Math.floor( this.w );
return this;
}
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
this.w = Math.ceil( this.w );
return this;
}
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
this.w = Math.round( this.w );
return this;
}
roundToZero() {
this.x = Math.trunc( this.x );
this.y = Math.trunc( this.y );
this.z = Math.trunc( this.z );
this.w = Math.trunc( this.w );
return this;
}
negate() {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
this.w = - this.w;
return this;
}
dot( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
}
lengthSq() {
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
}
length() {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
}
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
}
normalize() {
return this.divideScalar( this.length() || 1 );
}
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
this.w += ( v.w - this.w ) * alpha;
return this;
}
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
this.z = v1.z + ( v2.z - v1.z ) * alpha;
this.w = v1.w + ( v2.w - v1.w ) * alpha;
return this;
}
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
}
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
this.w = array[ offset + 3 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
array[ offset + 3 ] = this.w;
return array;
}
fromBufferAttribute( attribute, index ) {
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
this.w = attribute.getW( index );
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
this.w = Math.random();
return this;
}
*[ Symbol.iterator ]() {
yield this.x;
yield this.y;
yield this.z;
yield this.w;
}
}
/*
In options, we can specify:
* Texture parameters for an auto-generated target texture
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
class RenderTarget extends EventDispatcher {
constructor( width = 1, height = 1, options = {} ) {
super();
this.isRenderTarget = true;
this.width = width;
this.height = height;
this.depth = 1;
this.scissor = new Vector4( 0, 0, width, height );
this.scissorTest = false;
this.viewport = new Vector4( 0, 0, width, height );
const image = { width: width, height: height, depth: 1 };
options = Object.assign( {
generateMipmaps: false,
internalFormat: null,
minFilter: LinearFilter,
depthBuffer: true,
stencilBuffer: false,
resolveDepthBuffer: true,
resolveStencilBuffer: true,
depthTexture: null,
samples: 0,
count: 1
}, options );
const texture = new Texture( image, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace );
texture.flipY = false;
texture.generateMipmaps = options.generateMipmaps;
texture.internalFormat = options.internalFormat;
this.textures = [];
const count = options.count;
for ( let i = 0; i < count; i ++ ) {
this.textures[ i ] = texture.clone();
this.textures[ i ].isRenderTargetTexture = true;
this.textures[ i ].renderTarget = this;
}
this.depthBuffer = options.depthBuffer;
this.stencilBuffer = options.stencilBuffer;
this.resolveDepthBuffer = options.resolveDepthBuffer;
this.resolveStencilBuffer = options.resolveStencilBuffer;
this._depthTexture = null;
this.depthTexture = options.depthTexture;
this.samples = options.samples;
}
get texture() {
return this.textures[ 0 ];
}
set texture( value ) {
this.textures[ 0 ] = value;