lunary
Version:
Lunary is an open-source platform for AI developers.
176 lines (174 loc) • 4.8 kB
JavaScript
import {
src_default
} from "./chunk-T564GHW5.js";
import {
cleanExtra,
teeAsync
} from "./chunk-AX3726TK.js";
import {
__name
} from "./chunk-AGSXOS4O.js";
// src/openai.ts
var parseOpenaiMessage = /* @__PURE__ */ __name((message) => {
if (!message)
return void 0;
const {
role,
content,
audio,
refusal,
name,
function_call,
tool_calls,
tool_call_id
} = message;
return {
role,
content,
audio,
refusal,
function_call,
tool_calls,
tool_call_id,
name
};
}, "parseOpenaiMessage");
var PARAMS_TO_CAPTURE = [
"temperature",
"top_p",
"top_k",
"stop",
"audio",
"prediction",
"modalities",
"presence_penalty",
"frequency_penalty",
"seed",
"function_call",
"service_tier",
"parallel_tool_calls",
"functions",
"tools",
"tool_choice",
"top_logprobs",
"logprobs",
"response_format",
"max_tokens",
"max_completion_tokens",
"logit_bias"
];
function monitorOpenAI(openai, params = {}) {
const createChatCompletion = openai.chat.completions.create;
const wrappedCreateChatCompletion = /* @__PURE__ */ __name((...args) => (
// @ts-ignore
createChatCompletion.apply(openai.chat.completions, args)
), "wrappedCreateChatCompletion");
async function handleStream(stream, onComplete, onError) {
try {
let tokens = 0;
let choices = [];
for await (const part of stream) {
tokens += 1;
const chunk = part.choices[0];
const { index, delta } = chunk;
const { content, function_call, role, tool_calls } = delta;
if (!choices[index]) {
choices.splice(index, 0, {
message: { role, content, function_call, tool_calls: [] }
});
}
if (content)
choices[index].message.content += content || "";
if (role)
choices[index].message.role = role;
if (function_call?.name)
choices[index].message.function_call.name = function_call.name;
if (function_call?.arguments)
choices[index].message.function_call.arguments += function_call.arguments;
if (tool_calls) {
for (const tool_call of tool_calls) {
const existingCallIndex = choices[index].message.tool_calls.findIndex((tc) => tc.index === tool_call.index);
if (existingCallIndex === -1) {
choices[index].message.tool_calls.push(tool_call);
} else {
const existingCall = choices[index].message.tool_calls[existingCallIndex];
if (tool_call.function?.arguments) {
existingCall.function.arguments += tool_call.function.arguments;
}
}
}
}
}
choices = choices.map((c) => {
if (c.message.tool_calls) {
c.message.tool_calls = c.message.tool_calls.map((tc) => {
const { index, ...rest } = tc;
return rest;
});
}
return c;
});
const res = {
choices,
usage: { completion_tokens: tokens, prompt_tokens: void 0 }
};
onComplete(res);
} catch (error) {
console.error(error);
onError(error);
}
}
__name(handleStream, "handleStream");
const wrapped = src_default.wrapModel(wrappedCreateChatCompletion, {
nameParser: (request) => request.model,
inputParser: (request) => request.messages.map(parseOpenaiMessage),
paramsParser: (request) => {
const rawExtra = {};
for (const param of PARAMS_TO_CAPTURE) {
if (request[param])
rawExtra[param] = request[param];
}
return cleanExtra(rawExtra);
},
metadataParser(request) {
return request.metadata;
},
outputParser: (res) => parseOpenaiMessage(res.choices[0].message || ""),
tokensUsageParser: async (res) => {
return {
completion: res.usage?.completion_tokens,
prompt: res.usage?.prompt_tokens
};
},
tagsParser: (request) => {
const t = request.tags;
delete request.tags;
return t;
},
userIdParser: (request) => request.user,
userPropsParser: (request) => {
const props = request.userProps;
delete request.userProps;
return props;
},
templateParser: (request) => {
const templateId = request.templateId;
delete request.templateId;
delete request.prompt;
return templateId;
},
enableWaitUntil: (request) => !!request.stream,
waitUntil: (stream, onComplete, onError) => {
const [og, copy] = teeAsync(stream);
handleStream(copy, onComplete, onError);
return og;
},
...params
});
openai.chat.completions.create = wrapped;
return openai;
}
__name(monitorOpenAI, "monitorOpenAI");
export {
monitorOpenAI
};