UNPKG

lumenize

Version:

Illuminating the forest AND the trees in your data.

84 lines (48 loc) 3.21 kB
// Generated by CoffeeScript 1.10.0 /* * Lumenize # Lumenize provides tools for aggregating data and creating time series and other temporal visualizations. The primary time-series aggregating functionality is provided by: * Lumenize.TimeSeriesCalculator - Sets of single-metric series or group-by series * Lumenize.TransitionsCalculator - Counts or sums for items moving from one state to another * Lumenize.TimeInStateCalculator - Cumulative amount of time unique work items spend in a particular state Simple group-by, 2D pivot-table and even multi-dimensional aggregations (OLAP cube) are provided by: * Lumenize.OLAPCube - Used by above three Calculators but also useful stand-alone, particularly for hierarchical roll-ups All of the above use the mathematical and statistical functions provided by: * Lumenize.functions - count, sum, standardDeviation, percentile coverage, min, max, etc. Three transformation functions are provided: * Lumenize.arrayOfMaps_To_CSVStyleArray - Used to transform from record to table format * Lumenize.csvStyleArray_To_ArrayOfMaps - Used to transform from table to record format * Lumenize.arrayOfMaps_To_HighChartsSeries - Used to transform from record format to the format expected by the HighCharts charting library And last, additional functionality is provided by: * Lumenize.histogram - create a histogram of scatter data * Lumenize.utils - utility methods used by the rest of Lumenize (type, clone, array/object functions, etc.) */ (function() { var datatransform, tzTime; tzTime = require('tztime'); exports.Time = tzTime.Time; exports.TimelineIterator = tzTime.TimelineIterator; exports.Timeline = tzTime.Timeline; exports.utils = tzTime.utils; exports.TimeInStateCalculator = require('./src/TimeInStateCalculator').TimeInStateCalculator; exports.TransitionsCalculator = require('./src/TransitionsCalculator').TransitionsCalculator; exports.TimeSeriesCalculator = require('./src/TimeSeriesCalculator').TimeSeriesCalculator; datatransform = require('./src/dataTransform'); exports.arrayOfMaps_To_CSVStyleArray = datatransform.arrayOfMaps_To_CSVStyleArray; exports.csvStyleArray_To_ArrayOfMaps = datatransform.csvStyleArray_To_ArrayOfMaps; exports.arrayOfMaps_To_HighChartsSeries = datatransform.arrayOfMaps_To_HighChartsSeries; exports.csvString_To_CSVStyleArray = datatransform.csvString_To_CSVStyleArray; exports.csvStyleArray_To_CSVString = datatransform.csvStyleArray_To_CSVString; exports.functions = require('./src/functions').functions; exports.histogram = require('./src/histogram').histogram; exports.multiRegression = require('./src/multiRegression').multiRegression; exports.table = require('./src/table').table; exports.OLAPCube = require('./src/OLAPCube').OLAPCube; exports.anova = require('./src/anova').anova; exports.distributions = require('./src/distributions').distributions; exports.BayesianClassifier = require('./src/Classifier').BayesianClassifier; exports.Classifier = require('./src/Classifier').Classifier; exports.Store = require('./src/Store').Store; exports.RandomPicker = require('./src/RandomPicker').RandomPicker; }).call(this);