lucky-money-event
Version:
Lucky Money event
1,582 lines (1,575 loc) • 51.3 kB
JavaScript
import { S as E, g as L, E as p, f as ae, D as B, b as C, B as T, c as ue, d as A, h as M, w as v, i as x, j as ce, k as de, l as k, m as w, M as D, n as H, o as he, p as pe, q as z, s as F, t as R, A as le, R as fe, e as S } from "./index-Dzqa3T3s.js";
import { l as ge, a as me } from "./colorToUniform-C2jGzNe1.js";
import { c as _e, u as be, U as xe, B as ye, G as Ge, e as Be, R as Se, t as Pe, S as Te, a as Ce } from "./SharedSystems-DI1mfhvg.js";
const y = E.for2d();
class O {
start(e, t, r) {
const s = e.renderer, i = s.encoder, n = r.gpuProgram;
this._shader = r, this._geometry = t, i.setGeometry(t, n), y.blendMode = "normal", s.pipeline.getPipeline(
t,
n,
y
);
const o = s.globalUniforms.bindGroup;
i.resetBindGroup(1), i.setBindGroup(0, o, n);
}
execute(e, t) {
const r = this._shader.gpuProgram, s = e.renderer, i = s.encoder;
if (!t.bindGroup) {
const u = t.textures;
t.bindGroup = L(
u.textures,
u.count,
s.limits.maxBatchableTextures
);
}
y.blendMode = t.blendMode;
const n = s.bindGroup.getBindGroup(
t.bindGroup,
r,
1
), o = s.pipeline.getPipeline(
this._geometry,
r,
y,
t.topology
);
t.bindGroup._touch(s.textureGC.count), i.setPipeline(o), i.renderPassEncoder.setBindGroup(1, n), i.renderPassEncoder.drawIndexed(t.size, 1, t.start);
}
}
O.extension = {
type: [
p.WebGPUPipesAdaptor
],
name: "batch"
};
class I {
constructor(e) {
this._hash = /* @__PURE__ */ Object.create(null), this._renderer = e, this._renderer.renderableGC.addManagedHash(this, "_hash");
}
contextChange(e) {
this._gpu = e;
}
getBindGroup(e, t, r) {
return e._updateKey(), this._hash[e._key] || this._createBindGroup(e, t, r);
}
_createBindGroup(e, t, r) {
const s = this._gpu.device, i = t.layout[r], n = [], o = this._renderer;
for (const l in i) {
const h = e.resources[l] ?? e.resources[i[l]];
let f;
if (h._resourceType === "uniformGroup") {
const d = h;
o.ubo.updateUniformGroup(d);
const _ = d.buffer;
f = {
buffer: o.buffer.getGPUBuffer(_),
offset: 0,
size: _.descriptor.size
};
} else if (h._resourceType === "buffer") {
const d = h;
f = {
buffer: o.buffer.getGPUBuffer(d),
offset: 0,
size: d.descriptor.size
};
} else if (h._resourceType === "bufferResource") {
const d = h;
f = {
buffer: o.buffer.getGPUBuffer(d.buffer),
offset: d.offset,
size: d.size
};
} else if (h._resourceType === "textureSampler") {
const d = h;
f = o.texture.getGpuSampler(d);
} else if (h._resourceType === "textureSource") {
const d = h;
f = o.texture.getGpuSource(d).createView({});
}
n.push({
binding: i[l],
resource: f
});
}
const u = o.shader.getProgramData(t).bindGroups[r], c = s.createBindGroup({
layout: u,
entries: n
});
return this._hash[e._key] = c, c;
}
destroy() {
for (const e of Object.keys(this._hash))
this._hash[e] = null;
this._hash = null, this._renderer = null;
}
}
I.extension = {
type: [
p.WebGPUSystem
],
name: "bindGroup"
};
class W {
constructor(e) {
this._gpuBuffers = /* @__PURE__ */ Object.create(null), this._managedBuffers = [], e.renderableGC.addManagedHash(this, "_gpuBuffers");
}
contextChange(e) {
this._gpu = e;
}
getGPUBuffer(e) {
return this._gpuBuffers[e.uid] || this.createGPUBuffer(e);
}
updateBuffer(e) {
const t = this._gpuBuffers[e.uid] || this.createGPUBuffer(e), r = e.data;
return e._updateID && r && (e._updateID = 0, this._gpu.device.queue.writeBuffer(
t,
0,
r.buffer,
0,
// round to the nearest 4 bytes
(e._updateSize || r.byteLength) + 3 & -4
)), t;
}
/** dispose all WebGL resources of all managed buffers */
destroyAll() {
for (const e in this._gpuBuffers)
this._gpuBuffers[e].destroy();
this._gpuBuffers = {};
}
createGPUBuffer(e) {
this._gpuBuffers[e.uid] || (e.on("update", this.updateBuffer, this), e.on("change", this.onBufferChange, this), e.on("destroy", this.onBufferDestroy, this), this._managedBuffers.push(e));
const t = this._gpu.device.createBuffer(e.descriptor);
return e._updateID = 0, e.data && (ae(e.data.buffer, t.getMappedRange()), t.unmap()), this._gpuBuffers[e.uid] = t, t;
}
onBufferChange(e) {
this._gpuBuffers[e.uid].destroy(), e._updateID = 0, this._gpuBuffers[e.uid] = this.createGPUBuffer(e);
}
/**
* Disposes buffer
* @param buffer - buffer with data
*/
onBufferDestroy(e) {
this._managedBuffers.splice(this._managedBuffers.indexOf(e), 1), this._destroyBuffer(e);
}
destroy() {
this._managedBuffers.forEach((e) => this._destroyBuffer(e)), this._managedBuffers = null, this._gpuBuffers = null;
}
_destroyBuffer(e) {
this._gpuBuffers[e.uid].destroy(), e.off("update", this.updateBuffer, this), e.off("change", this.onBufferChange, this), e.off("destroy", this.onBufferDestroy, this), this._gpuBuffers[e.uid] = null;
}
}
W.extension = {
type: [
p.WebGPUSystem
],
name: "buffer"
};
class ve {
constructor({ minUniformOffsetAlignment: e }) {
this._minUniformOffsetAlignment = 256, this.byteIndex = 0, this._minUniformOffsetAlignment = e, this.data = new Float32Array(65535);
}
clear() {
this.byteIndex = 0;
}
addEmptyGroup(e) {
if (e > this._minUniformOffsetAlignment / 4)
throw new Error(`UniformBufferBatch: array is too large: ${e * 4}`);
const t = this.byteIndex;
let r = t + e * 4;
if (r = Math.ceil(r / this._minUniformOffsetAlignment) * this._minUniformOffsetAlignment, r > this.data.length * 4)
throw new Error("UniformBufferBatch: ubo batch got too big");
return this.byteIndex = r, t;
}
addGroup(e) {
const t = this.addEmptyGroup(e.length);
for (let r = 0; r < e.length; r++)
this.data[t / 4 + r] = e[r];
return t;
}
destroy() {
this.data = null;
}
}
class V {
constructor(e) {
this._colorMaskCache = 15, this._renderer = e;
}
setMask(e) {
this._colorMaskCache !== e && (this._colorMaskCache = e, this._renderer.pipeline.setColorMask(e));
}
destroy() {
this._renderer = null, this._colorMaskCache = null;
}
}
V.extension = {
type: [
p.WebGPUSystem
],
name: "colorMask"
};
class U {
/**
* @param {WebGPURenderer} renderer - The renderer this System works for.
*/
constructor(e) {
this._renderer = e;
}
async init(e) {
return this._initPromise ? this._initPromise : (this._initPromise = this._createDeviceAndAdaptor(e).then((t) => {
this.gpu = t, this._renderer.runners.contextChange.emit(this.gpu);
}), this._initPromise);
}
/**
* Handle the context change event
* @param gpu
*/
contextChange(e) {
this._renderer.gpu = e;
}
/**
* Helper class to create a WebGL Context
* @param {object} options - An options object that gets passed in to the canvas element containing the
* context attributes
* @see https://developer.mozilla.org/en/docs/Web/API/HTMLCanvasElement/getContext
* @returns {WebGLRenderingContext} the WebGL context
*/
async _createDeviceAndAdaptor(e) {
const t = await B.get().getNavigator().gpu.requestAdapter({
powerPreference: e.powerPreference,
forceFallbackAdapter: e.forceFallbackAdapter
}), r = [
"texture-compression-bc",
"texture-compression-astc",
"texture-compression-etc2"
].filter((i) => t.features.has(i)), s = await t.requestDevice({
requiredFeatures: r
});
return { adapter: t, device: s };
}
destroy() {
this.gpu = null, this._renderer = null;
}
}
U.extension = {
type: [
p.WebGPUSystem
],
name: "device"
};
U.defaultOptions = {
/**
* {@link WebGPUOptions.powerPreference}
* @default default
*/
powerPreference: void 0,
/**
* Force the use of the fallback adapter
* @default false
*/
forceFallbackAdapter: !1
};
class N {
constructor(e) {
this._boundBindGroup = /* @__PURE__ */ Object.create(null), this._boundVertexBuffer = /* @__PURE__ */ Object.create(null), this._renderer = e;
}
renderStart() {
this.commandFinished = new Promise((e) => {
this._resolveCommandFinished = e;
}), this.commandEncoder = this._renderer.gpu.device.createCommandEncoder();
}
beginRenderPass(e) {
this.endRenderPass(), this._clearCache(), this.renderPassEncoder = this.commandEncoder.beginRenderPass(e.descriptor);
}
endRenderPass() {
this.renderPassEncoder && this.renderPassEncoder.end(), this.renderPassEncoder = null;
}
setViewport(e) {
this.renderPassEncoder.setViewport(e.x, e.y, e.width, e.height, 0, 1);
}
setPipelineFromGeometryProgramAndState(e, t, r, s) {
const i = this._renderer.pipeline.getPipeline(e, t, r, s);
this.setPipeline(i);
}
setPipeline(e) {
this._boundPipeline !== e && (this._boundPipeline = e, this.renderPassEncoder.setPipeline(e));
}
_setVertexBuffer(e, t) {
this._boundVertexBuffer[e] !== t && (this._boundVertexBuffer[e] = t, this.renderPassEncoder.setVertexBuffer(e, this._renderer.buffer.updateBuffer(t)));
}
_setIndexBuffer(e) {
if (this._boundIndexBuffer === e)
return;
this._boundIndexBuffer = e;
const t = e.data.BYTES_PER_ELEMENT === 2 ? "uint16" : "uint32";
this.renderPassEncoder.setIndexBuffer(this._renderer.buffer.updateBuffer(e), t);
}
resetBindGroup(e) {
this._boundBindGroup[e] = null;
}
setBindGroup(e, t, r) {
if (this._boundBindGroup[e] === t)
return;
this._boundBindGroup[e] = t, t._touch(this._renderer.textureGC.count);
const s = this._renderer.bindGroup.getBindGroup(t, r, e);
this.renderPassEncoder.setBindGroup(e, s);
}
setGeometry(e, t) {
const r = this._renderer.pipeline.getBufferNamesToBind(e, t);
for (const s in r)
this._setVertexBuffer(s, e.attributes[r[s]].buffer);
e.indexBuffer && this._setIndexBuffer(e.indexBuffer);
}
_setShaderBindGroups(e, t) {
for (const r in e.groups) {
const s = e.groups[r];
t || this._syncBindGroup(s), this.setBindGroup(r, s, e.gpuProgram);
}
}
_syncBindGroup(e) {
for (const t in e.resources) {
const r = e.resources[t];
r.isUniformGroup && this._renderer.ubo.updateUniformGroup(r);
}
}
draw(e) {
const { geometry: t, shader: r, state: s, topology: i, size: n, start: o, instanceCount: u, skipSync: c } = e;
this.setPipelineFromGeometryProgramAndState(t, r.gpuProgram, s, i), this.setGeometry(t, r.gpuProgram), this._setShaderBindGroups(r, c), t.indexBuffer ? this.renderPassEncoder.drawIndexed(
n || t.indexBuffer.data.length,
u ?? t.instanceCount,
o || 0
) : this.renderPassEncoder.draw(n || t.getSize(), u ?? t.instanceCount, o || 0);
}
finishRenderPass() {
this.renderPassEncoder && (this.renderPassEncoder.end(), this.renderPassEncoder = null);
}
postrender() {
this.finishRenderPass(), this._gpu.device.queue.submit([this.commandEncoder.finish()]), this._resolveCommandFinished(), this.commandEncoder = null;
}
// restores a render pass if finishRenderPass was called
// not optimised as really used for debugging!
// used when we want to stop drawing and log a texture..
restoreRenderPass() {
const e = this._renderer.renderTarget.adaptor.getDescriptor(
this._renderer.renderTarget.renderTarget,
!1,
[0, 0, 0, 1]
);
this.renderPassEncoder = this.commandEncoder.beginRenderPass(e);
const t = this._boundPipeline, r = { ...this._boundVertexBuffer }, s = this._boundIndexBuffer, i = { ...this._boundBindGroup };
this._clearCache();
const n = this._renderer.renderTarget.viewport;
this.renderPassEncoder.setViewport(n.x, n.y, n.width, n.height, 0, 1), this.setPipeline(t);
for (const o in r)
this._setVertexBuffer(o, r[o]);
for (const o in i)
this.setBindGroup(o, i[o], null);
this._setIndexBuffer(s);
}
_clearCache() {
for (let e = 0; e < 16; e++)
this._boundBindGroup[e] = null, this._boundVertexBuffer[e] = null;
this._boundIndexBuffer = null, this._boundPipeline = null;
}
destroy() {
this._renderer = null, this._gpu = null, this._boundBindGroup = null, this._boundVertexBuffer = null, this._boundIndexBuffer = null, this._boundPipeline = null;
}
contextChange(e) {
this._gpu = e;
}
}
N.extension = {
type: [p.WebGPUSystem],
name: "encoder",
priority: 1
};
class j {
constructor(e) {
this._renderer = e;
}
contextChange() {
this.maxTextures = this._renderer.device.gpu.device.limits.maxSampledTexturesPerShaderStage, this.maxBatchableTextures = this.maxTextures;
}
destroy() {
}
}
j.extension = {
type: [
p.WebGPUSystem
],
name: "limits"
};
class K {
constructor(e) {
this._renderTargetStencilState = /* @__PURE__ */ Object.create(null), this._renderer = e, e.renderTarget.onRenderTargetChange.add(this);
}
onRenderTargetChange(e) {
let t = this._renderTargetStencilState[e.uid];
t || (t = this._renderTargetStencilState[e.uid] = {
stencilMode: C.DISABLED,
stencilReference: 0
}), this._activeRenderTarget = e, this.setStencilMode(t.stencilMode, t.stencilReference);
}
setStencilMode(e, t) {
const r = this._renderTargetStencilState[this._activeRenderTarget.uid];
r.stencilMode = e, r.stencilReference = t;
const s = this._renderer;
s.pipeline.setStencilMode(e), s.encoder.renderPassEncoder.setStencilReference(t);
}
destroy() {
this._renderer.renderTarget.onRenderTargetChange.remove(this), this._renderer = null, this._activeRenderTarget = null, this._renderTargetStencilState = null;
}
}
K.extension = {
type: [
p.WebGPUSystem
],
name: "stencil"
};
const G = {
i32: { align: 4, size: 4 },
u32: { align: 4, size: 4 },
f32: { align: 4, size: 4 },
f16: { align: 2, size: 2 },
"vec2<i32>": { align: 8, size: 8 },
"vec2<u32>": { align: 8, size: 8 },
"vec2<f32>": { align: 8, size: 8 },
"vec2<f16>": { align: 4, size: 4 },
"vec3<i32>": { align: 16, size: 12 },
"vec3<u32>": { align: 16, size: 12 },
"vec3<f32>": { align: 16, size: 12 },
"vec3<f16>": { align: 8, size: 6 },
"vec4<i32>": { align: 16, size: 16 },
"vec4<u32>": { align: 16, size: 16 },
"vec4<f32>": { align: 16, size: 16 },
"vec4<f16>": { align: 8, size: 8 },
"mat2x2<f32>": { align: 8, size: 16 },
"mat2x2<f16>": { align: 4, size: 8 },
"mat3x2<f32>": { align: 8, size: 24 },
"mat3x2<f16>": { align: 4, size: 12 },
"mat4x2<f32>": { align: 8, size: 32 },
"mat4x2<f16>": { align: 4, size: 16 },
"mat2x3<f32>": { align: 16, size: 32 },
"mat2x3<f16>": { align: 8, size: 16 },
"mat3x3<f32>": { align: 16, size: 48 },
"mat3x3<f16>": { align: 8, size: 24 },
"mat4x3<f32>": { align: 16, size: 64 },
"mat4x3<f16>": { align: 8, size: 32 },
"mat2x4<f32>": { align: 16, size: 32 },
"mat2x4<f16>": { align: 8, size: 16 },
"mat3x4<f32>": { align: 16, size: 48 },
"mat3x4<f16>": { align: 8, size: 24 },
"mat4x4<f32>": { align: 16, size: 64 },
"mat4x4<f16>": { align: 8, size: 32 }
};
function Ue(a) {
const e = a.map((r) => ({
data: r,
offset: 0,
size: 0
}));
let t = 0;
for (let r = 0; r < e.length; r++) {
const s = e[r];
let i = G[s.data.type].size;
const n = G[s.data.type].align;
if (!G[s.data.type])
throw new Error(`[Pixi.js] WebGPU UniformBuffer: Unknown type ${s.data.type}`);
s.data.size > 1 && (i = Math.max(i, n) * s.data.size), t = Math.ceil(t / n) * n, s.size = i, s.offset = t, t += i;
}
return t = Math.ceil(t / 16) * 16, { uboElements: e, size: t };
}
function Me(a, e) {
const { size: t, align: r } = G[a.data.type], s = (r - t) / 4, i = a.data.type.indexOf("i32") >= 0 ? "dataInt32" : "data";
return `
v = uv.${a.data.name};
${e !== 0 ? `offset += ${e};` : ""}
arrayOffset = offset;
t = 0;
for(var i=0; i < ${a.data.size * (t / 4)}; i++)
{
for(var j = 0; j < ${t / 4}; j++)
{
${i}[arrayOffset++] = v[t++];
}
${s !== 0 ? `arrayOffset += ${s};` : ""}
}
`;
}
function we(a) {
return _e(
a,
"uboWgsl",
Me,
be
);
}
class q extends xe {
constructor() {
super({
createUboElements: Ue,
generateUboSync: we
});
}
}
q.extension = {
type: [p.WebGPUSystem],
name: "ubo"
};
const b = 128;
class Y {
constructor(e) {
this._bindGroupHash = /* @__PURE__ */ Object.create(null), this._buffers = [], this._bindGroups = [], this._bufferResources = [], this._renderer = e, this._renderer.renderableGC.addManagedHash(this, "_bindGroupHash"), this._batchBuffer = new ve({ minUniformOffsetAlignment: b });
const t = 256 / b;
for (let r = 0; r < t; r++) {
let s = T.UNIFORM | T.COPY_DST;
r === 0 && (s |= T.COPY_SRC), this._buffers.push(new ue({
data: this._batchBuffer.data,
usage: s
}));
}
}
renderEnd() {
this._uploadBindGroups(), this._resetBindGroups();
}
_resetBindGroups() {
for (const e in this._bindGroupHash)
this._bindGroupHash[e] = null;
this._batchBuffer.clear();
}
// just works for single bind groups for now
getUniformBindGroup(e, t) {
if (!t && this._bindGroupHash[e.uid])
return this._bindGroupHash[e.uid];
this._renderer.ubo.ensureUniformGroup(e);
const r = e.buffer.data, s = this._batchBuffer.addEmptyGroup(r.length);
return this._renderer.ubo.syncUniformGroup(e, this._batchBuffer.data, s / 4), this._bindGroupHash[e.uid] = this._getBindGroup(s / b), this._bindGroupHash[e.uid];
}
getUboResource(e) {
this._renderer.ubo.updateUniformGroup(e);
const t = e.buffer.data, r = this._batchBuffer.addGroup(t);
return this._getBufferResource(r / b);
}
getArrayBindGroup(e) {
const t = this._batchBuffer.addGroup(e);
return this._getBindGroup(t / b);
}
getArrayBufferResource(e) {
const r = this._batchBuffer.addGroup(e) / b;
return this._getBufferResource(r);
}
_getBufferResource(e) {
if (!this._bufferResources[e]) {
const t = this._buffers[e % 2];
this._bufferResources[e] = new ye({
buffer: t,
offset: (e / 2 | 0) * 256,
size: b
});
}
return this._bufferResources[e];
}
_getBindGroup(e) {
if (!this._bindGroups[e]) {
const t = new A({
0: this._getBufferResource(e)
});
this._bindGroups[e] = t;
}
return this._bindGroups[e];
}
_uploadBindGroups() {
const e = this._renderer.buffer, t = this._buffers[0];
t.update(this._batchBuffer.byteIndex), e.updateBuffer(t);
const r = this._renderer.gpu.device.createCommandEncoder();
for (let s = 1; s < this._buffers.length; s++) {
const i = this._buffers[s];
r.copyBufferToBuffer(
e.getGPUBuffer(t),
b,
e.getGPUBuffer(i),
0,
this._batchBuffer.byteIndex
);
}
this._renderer.gpu.device.queue.submit([r.finish()]);
}
destroy() {
for (let e = 0; e < this._bindGroups.length; e++)
this._bindGroups[e].destroy();
this._bindGroups = null, this._bindGroupHash = null;
for (let e = 0; e < this._buffers.length; e++)
this._buffers[e].destroy();
this._buffers = null;
for (let e = 0; e < this._bufferResources.length; e++)
this._bufferResources[e].destroy();
this._bufferResources = null, this._batchBuffer.destroy(), this._bindGroupHash = null, this._renderer = null;
}
}
Y.extension = {
type: [
p.WebGPUPipes
],
name: "uniformBatch"
};
const Re = {
"point-list": 0,
"line-list": 1,
"line-strip": 2,
"triangle-list": 3,
"triangle-strip": 4
};
function Ee(a, e, t, r, s) {
return a << 24 | e << 16 | t << 10 | r << 5 | s;
}
function Le(a, e, t, r) {
return t << 6 | a << 3 | r << 1 | e;
}
class $ {
constructor(e) {
this._moduleCache = /* @__PURE__ */ Object.create(null), this._bufferLayoutsCache = /* @__PURE__ */ Object.create(null), this._bindingNamesCache = /* @__PURE__ */ Object.create(null), this._pipeCache = /* @__PURE__ */ Object.create(null), this._pipeStateCaches = /* @__PURE__ */ Object.create(null), this._colorMask = 15, this._multisampleCount = 1, this._renderer = e;
}
contextChange(e) {
this._gpu = e, this.setStencilMode(C.DISABLED), this._updatePipeHash();
}
setMultisampleCount(e) {
this._multisampleCount !== e && (this._multisampleCount = e, this._updatePipeHash());
}
setRenderTarget(e) {
this._multisampleCount = e.msaaSamples, this._depthStencilAttachment = e.descriptor.depthStencilAttachment ? 1 : 0, this._updatePipeHash();
}
setColorMask(e) {
this._colorMask !== e && (this._colorMask = e, this._updatePipeHash());
}
setStencilMode(e) {
this._stencilMode !== e && (this._stencilMode = e, this._stencilState = Ge[e], this._updatePipeHash());
}
setPipeline(e, t, r, s) {
const i = this.getPipeline(e, t, r);
s.setPipeline(i);
}
getPipeline(e, t, r, s) {
e._layoutKey || (Be(e, t.attributeData), this._generateBufferKey(e)), s || (s = e.topology);
const i = Ee(
e._layoutKey,
t._layoutKey,
r.data,
r._blendModeId,
Re[s]
);
return this._pipeCache[i] ? this._pipeCache[i] : (this._pipeCache[i] = this._createPipeline(e, t, r, s), this._pipeCache[i]);
}
_createPipeline(e, t, r, s) {
const i = this._gpu.device, n = this._createVertexBufferLayouts(e, t), o = this._renderer.state.getColorTargets(r);
o[0].writeMask = this._stencilMode === C.RENDERING_MASK_ADD ? 0 : this._colorMask;
const u = this._renderer.shader.getProgramData(t).pipeline, c = {
// TODO later check if its helpful to create..
// layout,
vertex: {
module: this._getModule(t.vertex.source),
entryPoint: t.vertex.entryPoint,
// geometry..
buffers: n
},
fragment: {
module: this._getModule(t.fragment.source),
entryPoint: t.fragment.entryPoint,
targets: o
},
primitive: {
topology: s,
cullMode: r.cullMode
},
layout: u,
multisample: {
count: this._multisampleCount
},
// depthStencil,
label: "PIXI Pipeline"
};
return this._depthStencilAttachment && (c.depthStencil = {
...this._stencilState,
format: "depth24plus-stencil8",
depthWriteEnabled: r.depthTest,
depthCompare: r.depthTest ? "less" : "always"
}), i.createRenderPipeline(c);
}
_getModule(e) {
return this._moduleCache[e] || this._createModule(e);
}
_createModule(e) {
const t = this._gpu.device;
return this._moduleCache[e] = t.createShaderModule({
code: e
}), this._moduleCache[e];
}
_generateBufferKey(e) {
const t = [];
let r = 0;
const s = Object.keys(e.attributes).sort();
for (let n = 0; n < s.length; n++) {
const o = e.attributes[s[n]];
t[r++] = o.offset, t[r++] = o.format, t[r++] = o.stride, t[r++] = o.instance;
}
const i = t.join("|");
return e._layoutKey = M(i, "geometry"), e._layoutKey;
}
_generateAttributeLocationsKey(e) {
const t = [];
let r = 0;
const s = Object.keys(e.attributeData).sort();
for (let n = 0; n < s.length; n++) {
const o = e.attributeData[s[n]];
t[r++] = o.location;
}
const i = t.join("|");
return e._attributeLocationsKey = M(i, "programAttributes"), e._attributeLocationsKey;
}
/**
* Returns a hash of buffer names mapped to bind locations.
* This is used to bind the correct buffer to the correct location in the shader.
* @param geometry - The geometry where to get the buffer names
* @param program - The program where to get the buffer names
* @returns An object of buffer names mapped to the bind location.
*/
getBufferNamesToBind(e, t) {
const r = e._layoutKey << 16 | t._attributeLocationsKey;
if (this._bindingNamesCache[r])
return this._bindingNamesCache[r];
const s = this._createVertexBufferLayouts(e, t), i = /* @__PURE__ */ Object.create(null), n = t.attributeData;
for (let o = 0; o < s.length; o++) {
const c = Object.values(s[o].attributes)[0].shaderLocation;
for (const l in n)
if (n[l].location === c) {
i[o] = l;
break;
}
}
return this._bindingNamesCache[r] = i, i;
}
_createVertexBufferLayouts(e, t) {
t._attributeLocationsKey || this._generateAttributeLocationsKey(t);
const r = e._layoutKey << 16 | t._attributeLocationsKey;
if (this._bufferLayoutsCache[r])
return this._bufferLayoutsCache[r];
const s = [];
return e.buffers.forEach((i) => {
const n = {
arrayStride: 0,
stepMode: "vertex",
attributes: []
}, o = n.attributes;
for (const u in t.attributeData) {
const c = e.attributes[u];
(c.divisor ?? 1) !== 1 && v(`Attribute ${u} has an invalid divisor value of '${c.divisor}'. WebGPU only supports a divisor value of 1`), c.buffer === i && (n.arrayStride = c.stride, n.stepMode = c.instance ? "instance" : "vertex", o.push({
shaderLocation: t.attributeData[u].location,
offset: c.offset,
format: c.format
}));
}
o.length && s.push(n);
}), this._bufferLayoutsCache[r] = s, s;
}
_updatePipeHash() {
const e = Le(
this._stencilMode,
this._multisampleCount,
this._colorMask,
this._depthStencilAttachment
);
this._pipeStateCaches[e] || (this._pipeStateCaches[e] = /* @__PURE__ */ Object.create(null)), this._pipeCache = this._pipeStateCaches[e];
}
destroy() {
this._renderer = null, this._bufferLayoutsCache = null;
}
}
$.extension = {
type: [p.WebGPUSystem],
name: "pipeline"
};
class Ae {
constructor() {
this.contexts = [], this.msaaTextures = [], this.msaaSamples = 1;
}
}
class ke {
init(e, t) {
this._renderer = e, this._renderTargetSystem = t;
}
copyToTexture(e, t, r, s, i) {
const n = this._renderer, o = this._getGpuColorTexture(
e
), u = n.texture.getGpuSource(
t.source
);
return n.encoder.commandEncoder.copyTextureToTexture(
{
texture: o,
origin: r
},
{
texture: u,
origin: i
},
s
), t;
}
startRenderPass(e, t = !0, r, s) {
const n = this._renderTargetSystem.getGpuRenderTarget(e), o = this.getDescriptor(e, t, r);
n.descriptor = o, this._renderer.pipeline.setRenderTarget(n), this._renderer.encoder.beginRenderPass(n), this._renderer.encoder.setViewport(s);
}
finishRenderPass() {
this._renderer.encoder.endRenderPass();
}
/**
* returns the gpu texture for the first color texture in the render target
* mainly used by the filter manager to get copy the texture for blending
* @param renderTarget
* @returns a gpu texture
*/
_getGpuColorTexture(e) {
const t = this._renderTargetSystem.getGpuRenderTarget(e);
return t.contexts[0] ? t.contexts[0].getCurrentTexture() : this._renderer.texture.getGpuSource(
e.colorTextures[0].source
);
}
getDescriptor(e, t, r) {
typeof t == "boolean" && (t = t ? x.ALL : x.NONE);
const s = this._renderTargetSystem, i = s.getGpuRenderTarget(e), n = e.colorTextures.map(
(c, l) => {
const h = i.contexts[l];
let f, d;
h ? f = h.getCurrentTexture().createView() : f = this._renderer.texture.getGpuSource(c).createView({
mipLevelCount: 1
}), i.msaaTextures[l] && (d = f, f = this._renderer.texture.getTextureView(
i.msaaTextures[l]
));
const _ = t & x.COLOR ? "clear" : "load";
return r ?? (r = s.defaultClearColor), {
view: f,
resolveTarget: d,
clearValue: r,
storeOp: "store",
loadOp: _
};
}
);
let o;
if ((e.stencil || e.depth) && !e.depthStencilTexture && (e.ensureDepthStencilTexture(), e.depthStencilTexture.source.sampleCount = i.msaa ? 4 : 1), e.depthStencilTexture) {
const c = t & x.STENCIL ? "clear" : "load", l = t & x.DEPTH ? "clear" : "load";
o = {
view: this._renderer.texture.getGpuSource(e.depthStencilTexture.source).createView(),
stencilStoreOp: "store",
stencilLoadOp: c,
depthClearValue: 1,
depthLoadOp: l,
depthStoreOp: "store"
};
}
return {
colorAttachments: n,
depthStencilAttachment: o
};
}
clear(e, t = !0, r, s) {
if (!t)
return;
const { gpu: i, encoder: n } = this._renderer, o = i.device;
if (n.commandEncoder === null) {
const c = o.createCommandEncoder(), l = this.getDescriptor(e, t, r), h = c.beginRenderPass(l);
h.setViewport(s.x, s.y, s.width, s.height, 0, 1), h.end();
const f = c.finish();
o.queue.submit([f]);
} else
this.startRenderPass(e, t, r, s);
}
initGpuRenderTarget(e) {
e.isRoot = !0;
const t = new Ae();
return e.colorTextures.forEach((r, s) => {
if (r instanceof ce) {
const i = r.resource.getContext(
"webgpu"
), n = r.transparent ? "premultiplied" : "opaque";
try {
i.configure({
device: this._renderer.gpu.device,
usage: GPUTextureUsage.TEXTURE_BINDING | GPUTextureUsage.COPY_DST | GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.COPY_SRC,
format: "bgra8unorm",
alphaMode: n
});
} catch (o) {
console.error(o);
}
t.contexts[s] = i;
}
if (t.msaa = r.source.antialias, r.source.antialias) {
const i = new de({
width: 0,
height: 0,
sampleCount: 4
});
t.msaaTextures[s] = i;
}
}), t.msaa && (t.msaaSamples = 4, e.depthStencilTexture && (e.depthStencilTexture.source.sampleCount = 4)), t;
}
destroyGpuRenderTarget(e) {
e.contexts.forEach((t) => {
t.unconfigure();
}), e.msaaTextures.forEach((t) => {
t.destroy();
}), e.msaaTextures.length = 0, e.contexts.length = 0;
}
ensureDepthStencilTexture(e) {
const t = this._renderTargetSystem.getGpuRenderTarget(e);
e.depthStencilTexture && t.msaa && (e.depthStencilTexture.source.sampleCount = 4);
}
resizeGpuRenderTarget(e) {
const t = this._renderTargetSystem.getGpuRenderTarget(e);
t.width = e.width, t.height = e.height, t.msaa && e.colorTextures.forEach((r, s) => {
t.msaaTextures[s]?.resize(
r.source.width,
r.source.height,
r.source._resolution
);
});
}
}
class X extends Se {
constructor(e) {
super(e), this.adaptor = new ke(), this.adaptor.init(e, this);
}
}
X.extension = {
type: [p.WebGPUSystem],
name: "renderTarget"
};
class Z {
constructor() {
this._gpuProgramData = /* @__PURE__ */ Object.create(null);
}
contextChange(e) {
this._gpu = e;
}
getProgramData(e) {
return this._gpuProgramData[e._layoutKey] || this._createGPUProgramData(e);
}
_createGPUProgramData(e) {
const t = this._gpu.device, r = e.gpuLayout.map((i) => t.createBindGroupLayout({ entries: i })), s = { bindGroupLayouts: r };
return this._gpuProgramData[e._layoutKey] = {
bindGroups: r,
pipeline: t.createPipelineLayout(s)
}, this._gpuProgramData[e._layoutKey];
}
destroy() {
this._gpu = null, this._gpuProgramData = null;
}
}
Z.extension = {
type: [
p.WebGPUSystem
],
name: "shader"
};
const g = {};
g.normal = {
alpha: {
srcFactor: "one",
dstFactor: "one-minus-src-alpha",
operation: "add"
},
color: {
srcFactor: "one",
dstFactor: "one-minus-src-alpha",
operation: "add"
}
};
g.add = {
alpha: {
srcFactor: "src-alpha",
dstFactor: "one-minus-src-alpha",
operation: "add"
},
color: {
srcFactor: "one",
dstFactor: "one",
operation: "add"
}
};
g.multiply = {
alpha: {
srcFactor: "one",
dstFactor: "one-minus-src-alpha",
operation: "add"
},
color: {
srcFactor: "dst",
dstFactor: "one-minus-src-alpha",
operation: "add"
}
};
g.screen = {
alpha: {
srcFactor: "one",
dstFactor: "one-minus-src-alpha",
operation: "add"
},
color: {
srcFactor: "one",
dstFactor: "one-minus-src",
operation: "add"
}
};
g.overlay = {
alpha: {
srcFactor: "one",
dstFactor: "one-minus-src-alpha",
operation: "add"
},
color: {
srcFactor: "one",
dstFactor: "one-minus-src",
operation: "add"
}
};
g.none = {
alpha: {
srcFactor: "one",
dstFactor: "one-minus-src-alpha",
operation: "add"
},
color: {
srcFactor: "zero",
dstFactor: "zero",
operation: "add"
}
};
g["normal-npm"] = {
alpha: {
srcFactor: "one",
dstFactor: "one-minus-src-alpha",
operation: "add"
},
color: {
srcFactor: "src-alpha",
dstFactor: "one-minus-src-alpha",
operation: "add"
}
};
g["add-npm"] = {
alpha: {
srcFactor: "one",
dstFactor: "one",
operation: "add"
},
color: {
srcFactor: "src-alpha",
dstFactor: "one",
operation: "add"
}
};
g["screen-npm"] = {
alpha: {
srcFactor: "one",
dstFactor: "one-minus-src-alpha",
operation: "add"
},
color: {
srcFactor: "src-alpha",
dstFactor: "one-minus-src",
operation: "add"
}
};
g.erase = {
alpha: {
srcFactor: "zero",
dstFactor: "one-minus-src-alpha",
operation: "add"
},
color: {
srcFactor: "zero",
dstFactor: "one-minus-src",
operation: "add"
}
};
g.min = {
alpha: {
srcFactor: "one",
dstFactor: "one",
operation: "min"
},
color: {
srcFactor: "one",
dstFactor: "one",
operation: "min"
}
};
g.max = {
alpha: {
srcFactor: "one",
dstFactor: "one",
operation: "max"
},
color: {
srcFactor: "one",
dstFactor: "one",
operation: "max"
}
};
class J {
constructor() {
this.defaultState = new E(), this.defaultState.blend = !0;
}
contextChange(e) {
this.gpu = e;
}
/**
* Gets the blend mode data for the current state
* @param state - The state to get the blend mode from
*/
getColorTargets(e) {
return [
{
format: "bgra8unorm",
writeMask: 0,
blend: g[e.blendMode] || g.normal
}
];
}
destroy() {
this.gpu = null;
}
}
J.extension = {
type: [
p.WebGPUSystem
],
name: "state"
};
const De = {
type: "image",
upload(a, e, t) {
const r = a.resource, s = (a.pixelWidth | 0) * (a.pixelHeight | 0), i = r.byteLength / s;
t.device.queue.writeTexture(
{ texture: e },
r,
{
offset: 0,
rowsPerImage: a.pixelHeight,
bytesPerRow: a.pixelHeight * i
},
{
width: a.pixelWidth,
height: a.pixelHeight,
depthOrArrayLayers: 1
}
);
}
}, Q = {
"bc1-rgba-unorm": { blockBytes: 8, blockWidth: 4, blockHeight: 4 },
"bc2-rgba-unorm": { blockBytes: 16, blockWidth: 4, blockHeight: 4 },
"bc3-rgba-unorm": { blockBytes: 16, blockWidth: 4, blockHeight: 4 },
"bc7-rgba-unorm": { blockBytes: 16, blockWidth: 4, blockHeight: 4 },
"etc1-rgb-unorm": { blockBytes: 8, blockWidth: 4, blockHeight: 4 },
"etc2-rgba8unorm": { blockBytes: 16, blockWidth: 4, blockHeight: 4 },
"astc-4x4-unorm": { blockBytes: 16, blockWidth: 4, blockHeight: 4 }
}, He = { blockBytes: 4, blockWidth: 1, blockHeight: 1 }, ze = {
type: "compressed",
upload(a, e, t) {
let r = a.pixelWidth, s = a.pixelHeight;
const i = Q[a.format] || He;
for (let n = 0; n < a.resource.length; n++) {
const o = a.resource[n], u = Math.ceil(r / i.blockWidth) * i.blockBytes;
t.device.queue.writeTexture(
{
texture: e,
mipLevel: n
},
o,
{
offset: 0,
bytesPerRow: u
},
{
width: Math.ceil(r / i.blockWidth) * i.blockWidth,
height: Math.ceil(s / i.blockHeight) * i.blockHeight,
depthOrArrayLayers: 1
}
), r = Math.max(r >> 1, 1), s = Math.max(s >> 1, 1);
}
}
}, ee = {
type: "image",
upload(a, e, t) {
const r = a.resource;
if (!r)
return;
if (globalThis.HTMLImageElement && r instanceof HTMLImageElement) {
const o = B.get().createCanvas(r.width, r.height);
o.getContext("2d").drawImage(r, 0, 0, r.width, r.height), a.resource = o, v("ImageSource: Image element passed, converting to canvas and replacing resource.");
}
const s = Math.min(e.width, a.resourceWidth || a.pixelWidth), i = Math.min(e.height, a.resourceHeight || a.pixelHeight), n = a.alphaMode === "premultiply-alpha-on-upload";
t.device.queue.copyExternalImageToTexture(
{ source: r },
{ texture: e, premultipliedAlpha: n },
{
width: s,
height: i
}
);
}
}, Fe = {
type: "video",
upload(a, e, t) {
ee.upload(a, e, t);
}
};
class Oe {
constructor(e) {
this.device = e, this.sampler = e.createSampler({ minFilter: "linear" }), this.pipelines = {};
}
_getMipmapPipeline(e) {
let t = this.pipelines[e];
return t || (this.mipmapShaderModule || (this.mipmapShaderModule = this.device.createShaderModule({
code: (
/* wgsl */
`
var<private> pos : array<vec2<f32>, 3> = array<vec2<f32>, 3>(
vec2<f32>(-1.0, -1.0), vec2<f32>(-1.0, 3.0), vec2<f32>(3.0, -1.0));
struct VertexOutput {
@builtin(position) position : vec4<f32>,
@location(0) texCoord : vec2<f32>,
};
@vertex
fn vertexMain(@builtin(vertex_index) vertexIndex : u32) -> VertexOutput {
var output : VertexOutput;
output.texCoord = pos[vertexIndex] * vec2<f32>(0.5, -0.5) + vec2<f32>(0.5);
output.position = vec4<f32>(pos[vertexIndex], 0.0, 1.0);
return output;
}
@group(0) @binding(0) var imgSampler : sampler;
@group(0) @binding(1) var img : texture_2d<f32>;
@fragment
fn fragmentMain(@location(0) texCoord : vec2<f32>) -> @location(0) vec4<f32> {
return textureSample(img, imgSampler, texCoord);
}
`
)
})), t = this.device.createRenderPipeline({
layout: "auto",
vertex: {
module: this.mipmapShaderModule,
entryPoint: "vertexMain"
},
fragment: {
module: this.mipmapShaderModule,
entryPoint: "fragmentMain",
targets: [{ format: e }]
}
}), this.pipelines[e] = t), t;
}
/**
* Generates mipmaps for the given GPUTexture from the data in level 0.
* @param {module:External.GPUTexture} texture - Texture to generate mipmaps for.
* @returns {module:External.GPUTexture} - The originally passed texture
*/
generateMipmap(e) {
const t = this._getMipmapPipeline(e.format);
if (e.dimension === "3d" || e.dimension === "1d")
throw new Error("Generating mipmaps for non-2d textures is currently unsupported!");
let r = e;
const s = e.depthOrArrayLayers || 1, i = e.usage & GPUTextureUsage.RENDER_ATTACHMENT;
if (!i) {
const u = {
size: {
width: Math.ceil(e.width / 2),
height: Math.ceil(e.height / 2),
depthOrArrayLayers: s
},
format: e.format,
usage: GPUTextureUsage.TEXTURE_BINDING | GPUTextureUsage.COPY_SRC | GPUTextureUsage.RENDER_ATTACHMENT,
mipLevelCount: e.mipLevelCount - 1
};
r = this.device.createTexture(u);
}
const n = this.device.createCommandEncoder({}), o = t.getBindGroupLayout(0);
for (let u = 0; u < s; ++u) {
let c = e.createView({
baseMipLevel: 0,
mipLevelCount: 1,
dimension: "2d",
baseArrayLayer: u,
arrayLayerCount: 1
}), l = i ? 1 : 0;
for (let h = 1; h < e.mipLevelCount; ++h) {
const f = r.createView({
baseMipLevel: l++,
mipLevelCount: 1,
dimension: "2d",
baseArrayLayer: u,
arrayLayerCount: 1
}), d = n.beginRenderPass({
colorAttachments: [{
view: f,
storeOp: "store",
loadOp: "clear",
clearValue: { r: 0, g: 0, b: 0, a: 0 }
}]
}), _ = this.device.createBindGroup({
layout: o,
entries: [{
binding: 0,
resource: this.sampler
}, {
binding: 1,
resource: c
}]
});
d.setPipeline(t), d.setBindGroup(0, _), d.draw(3, 1, 0, 0), d.end(), c = f;
}
}
if (!i) {
const u = {
width: Math.ceil(e.width / 2),
height: Math.ceil(e.height / 2),
depthOrArrayLayers: s
};
for (let c = 1; c < e.mipLevelCount; ++c)
n.copyTextureToTexture({
texture: r,
mipLevel: c - 1
}, {
texture: e,
mipLevel: c
}, u), u.width = Math.ceil(u.width / 2), u.height = Math.ceil(u.height / 2);
}
return this.device.queue.submit([n.finish()]), i || r.destroy(), e;
}
}
class te {
constructor(e) {
this.managedTextures = [], this._gpuSources = /* @__PURE__ */ Object.create(null), this._gpuSamplers = /* @__PURE__ */ Object.create(null), this._bindGroupHash = /* @__PURE__ */ Object.create(null), this._textureViewHash = /* @__PURE__ */ Object.create(null), this._uploads = {
image: ee,
buffer: De,
video: Fe,
compressed: ze
}, this._renderer = e, e.renderableGC.addManagedHash(this, "_gpuSources"), e.renderableGC.addManagedHash(this, "_gpuSamplers"), e.renderableGC.addManagedHash(this, "_bindGroupHash"), e.renderableGC.addManagedHash(this, "_textureViewHash");
}
contextChange(e) {
this._gpu = e;
}
initSource(e) {
if (e.autoGenerateMipmaps) {
const u = Math.max(e.pixelWidth, e.pixelHeight);
e.mipLevelCount = Math.floor(Math.log2(u)) + 1;
}
let t = GPUTextureUsage.TEXTURE_BINDING | GPUTextureUsage.COPY_DST;
e.uploadMethodId !== "compressed" && (t |= GPUTextureUsage.RENDER_ATTACHMENT, t |= GPUTextureUsage.COPY_SRC);
const r = Q[e.format] || { blockWidth: 1, blockHeight: 1 }, s = Math.ceil(e.pixelWidth / r.blockWidth) * r.blockWidth, i = Math.ceil(e.pixelHeight / r.blockHeight) * r.blockHeight, n = {
label: e.label,
size: { width: s, height: i },
format: e.format,
sampleCount: e.sampleCount,
mipLevelCount: e.mipLevelCount,
dimension: e.dimension,
usage: t
}, o = this._gpu.device.createTexture(n);
return this._gpuSources[e.uid] = o, this.managedTextures.includes(e) || (e.on("update", this.onSourceUpdate, this), e.on("resize", this.onSourceResize, this), e.on("destroy", this.onSourceDestroy, this), e.on("unload", this.onSourceUnload, this), e.on("updateMipmaps", this.onUpdateMipmaps, this), this.managedTextures.push(e)), this.onSourceUpdate(e), o;
}
onSourceUpdate(e) {
const t = this.getGpuSource(e);
t && (this._uploads[e.uploadMethodId] && this._uploads[e.uploadMethodId].upload(e, t, this._gpu), e.autoGenerateMipmaps && e.mipLevelCount > 1 && this.onUpdateMipmaps(e));
}
onSourceUnload(e) {
const t = this._gpuSources[e.uid];
t && (this._gpuSources[e.uid] = null, t.destroy());
}
onUpdateMipmaps(e) {
this._mipmapGenerator || (this._mipmapGenerator = new Oe(this._gpu.device));
const t = this.getGpuSource(e);
this._mipmapGenerator.generateMipmap(t);
}
onSourceDestroy(e) {
e.off("update", this.onSourceUpdate, this), e.off("unload", this.onSourceUnload, this), e.off("destroy", this.onSourceDestroy, this), e.off("resize", this.onSourceResize, this), e.off("updateMipmaps", this.onUpdateMipmaps, this), this.managedTextures.splice(this.managedTextures.indexOf(e), 1), this.onSourceUnload(e);
}
onSourceResize(e) {
const t = this._gpuSources[e.uid];
t ? (t.width !== e.pixelWidth || t.height !== e.pixelHeight) && (this._textureViewHash[e.uid] = null, this._bindGroupHash[e.uid] = null, this.onSourceUnload(e), this.initSource(e)) : this.initSource(e);
}
_initSampler(e) {
return this._gpuSamplers[e._resourceId] = this._gpu.device.createSampler(e), this._gpuSamplers[e._resourceId];
}
getGpuSampler(e) {
return this._gpuSamplers[e._resourceId] || this._initSampler(e);
}
getGpuSource(e) {
return this._gpuSources[e.uid] || this.initSource(e);
}
/**
* this returns s bind group for a specific texture, the bind group contains
* - the texture source
* - the texture style
* - the texture matrix
* This is cached so the bind group should only be created once per texture
* @param texture - the texture you want the bindgroup for
* @returns the bind group for the texture
*/
getTextureBindGroup(e) {
return this._bindGroupHash[e.uid] ?? this._createTextureBindGroup(e);
}
_createTextureBindGroup(e) {
const t = e.source;
return this._bindGroupHash[e.uid] = new A({
0: t,
1: t.style,
2: new k({
uTextureMatrix: { type: "mat3x3<f32>", value: e.textureMatrix.mapCoord }
})
}), this._bindGroupHash[e.uid];
}
getTextureView(e) {
const t = e.source;
return this._textureViewHash[t.uid] ?? this._createTextureView(t);
}
_createTextureView(e) {
return this._textureViewHash[e.uid] = this.getGpuSource(e).createView(), this._textureViewHash[e.uid];
}
generateCanvas(e) {
const t = this._renderer, r = t.gpu.device.createCommandEncoder(), s = B.get().createCanvas();
s.width = e.source.pixelWidth, s.height = e.source.pixelHeight;
const i = s.getContext("webgpu");
return i.configure({
device: t.gpu.device,
usage: GPUTextureUsage.COPY_DST | GPUTextureUsage.COPY_SRC,
format: B.get().getNavigator().gpu.getPreferredCanvasFormat(),
alphaMode: "premultiplied"
}), r.copyTextureToTexture({
texture: t.texture.getGpuSource(e.source),
origin: {
x: 0,
y: 0
}
}, {
texture: i.getCurrentTexture()
}, {
width: s.width,
height: s.height
}), t.gpu.device.queue.submit([r.finish()]), s;
}
getPixels(e) {
const t = this.generateCanvas(e), r = w.getOptimalCanvasAndContext(t.width, t.height), s = r.context;
s.drawImage(t, 0, 0);
const { width: i, height: n } = t, o = s.getImageData(0, 0, i, n), u = new Uint8ClampedArray(o.data.buffer);
return w.returnCanvasAndContext(r), { pixels: u, width: i, height: n };
}
destroy() {
this.managedTextures.slice().forEach((e) => this.onSourceDestroy(e)), this.managedTextures = null;
for (const e of Object.keys(this._bindGroupHash)) {
const t = Number(e);
this._bindGroupHash[t]?.destroy(), this._bindGroupHash[t] = null;
}
this._gpu = null, this._mipmapGenerator = null, this._gpuSources = null, this._bindGroupHash = null, this._textureViewHash = null, this._gpuSamplers = null;
}
}
te.extension = {
type: [
p.WebGPUSystem
],
name: "texture"
};
class re {
constructor() {
this._maxTextures = 0;
}
contextChange(e) {
const t = new k({
uTransformMatrix: { value: new D(), type: "mat3x3<f32>" },
uColor: { value: new Float32Array([1, 1, 1, 1]), type: "vec4<f32>" },
uRound: { value: 0, type: "f32" }
});
this._maxTextures = e.limits.maxBatchableTextures;
const r = H({
name: "graphics",
bits: [
he,
pe(this._maxTextures),
ge,
z
]
});
this.shader = new F({
gpuProgram: r,
resources: {
// added on the fly!
localUniforms: t
}
});
}
execute(e, t) {
const r = t.context, s = r.customShader || this.shader, i = e.renderer, n = i.graphicsContext, {
batcher: o,
instructions: u
} = n.getContextRenderData(r), c = i.encoder;
c.setGeometry(o.geometry, s.gpuProgram);
const l = i.globalUniforms.bindGroup;
c.setBindGroup(0, l, s.gpuProgram);
const h = i.renderPipes.uniformBatch.getUniformBindGroup(s.resources.localUniforms, !0);
c.setBindGroup(2, h, s.gpuProgram);
const f = u.instructions;
let d = null;
for (let _ = 0; _ < u.instructionSize; _++) {
const m = f[_];
if (m.topology !== d && (d = m.topology, c.setPipelineFromGeometryProgramAndState(
o.geometry,
s.gpuProgram,
e.state,
m.topology
)), s.groups[1] = m.bindGroup, !m.gpuBindGroup) {
const P = m.textures;
m.bindGroup = L(
P.textures,
P.count,
this._maxTextures
), m.gpuBindGroup = i.bindGroup.getBindGroup(
m.bindGroup,
s.gpuProgram,
1
);
}
c.setBindGroup(1, m.bindGroup, s.gpuProgram), c.renderPassEncoder.drawIndexed(m.size, 1, m.start);
}
}
destroy() {
this.shader.destroy(!0), this.shader = null;
}
}
re.extension = {
type: [
p.WebGPUPipesAdaptor
],
name: "graphics"
};
class se {
init() {
const e = H({
name: "mesh",
bits: [
me,
Pe,
z
]
});
this._shader = new F({
gpuProgram: e,
resources: {
uTexture: R.EMPTY._source,
uSampler: R.EMPTY._source.style,
textureUniforms: {
uTextureMatrix: { type: "mat3x3<f32>", value: new D() }
}
}
});
}
execute(e, t) {
const r = e.renderer;