llmverify
Version:
AI Output Verification Toolkit — Local-first LLM safety, hallucination detection, PII redaction, prompt injection defense, and runtime monitoring. Zero telemetry. OWASP LLM Top 10 aligned.
40 lines (39 loc) • 1.19 kB
TypeScript
/**
* Latency Engine
*
* Monitors LLM response latency and detects anomalies.
* Uses baseline comparison to identify performance degradation.
*
* WHAT THIS DOES:
* ✅ Compares current latency to established baseline
* ✅ Detects sudden latency spikes
* ✅ Provides normalized anomaly score
*
* WHAT THIS DOES NOT DO:
* ❌ Predict future latency
* ❌ Identify root cause of latency issues
* ❌ Account for network conditions
*
* @module engines/runtime/latency
* @author Haiec
* @license MIT
*/
import { CallRecord, EngineResult, BaselineState } from '../../types/runtime';
/**
* Analyzes latency of an LLM call against baseline.
*
* @param call - The call record to analyze
* @param baseline - Current baseline state
* @param thresholds - Optional custom thresholds
* @returns Engine result with latency analysis
*
* @example
* const result = LatencyEngine(callRecord, baseline);
* if (result.status === 'error') {
* console.log('Latency spike detected');
* }
*/
export declare function LatencyEngine(call: CallRecord, baseline: Pick<BaselineState, 'avgLatencyMs'>, thresholds?: {
warnRatio?: number;
errorRatio?: number;
}): EngineResult;