lib0
Version:
> Monorepo of isomorphic utility functions
438 lines (405 loc) • 10.6 kB
JavaScript
Object.defineProperty(exports, '__esModule', { value: true });
var math = require('./math-08e068f9.cjs');
var webcrypto = require('lib0/webcrypto');
var array = require('./array-704ca50e.cjs');
var encoding = require('./buffer-bc255c75.cjs');
require('./set-0f209abb.cjs');
require('./string-6d104757.cjs');
require('./environment-ad129e4d.cjs');
require('./map-9a5915e4.cjs');
require('./conditions-f5c0c102.cjs');
require('./storage.cjs');
require('./function-314fdc56.cjs');
require('./object-fecf6a7b.cjs');
require('./binary-ac8e39e2.cjs');
require('./number-466d8922.cjs');
require('./error-8582d695.cjs');
function _interopNamespace(e) {
if (e && e.__esModule) return e;
var n = Object.create(null);
if (e) {
Object.keys(e).forEach(function (k) {
if (k !== 'default') {
var d = Object.getOwnPropertyDescriptor(e, k);
Object.defineProperty(n, k, d.get ? d : {
enumerable: true,
get: function () { return e[k]; }
});
}
});
}
n["default"] = e;
return Object.freeze(n);
}
var webcrypto__namespace = /*#__PURE__*/_interopNamespace(webcrypto);
/**
* The idea of the Rabin fingerprint algorithm is to represent the binary as a polynomial in a
* finite field (Galois Field G(2)). The polynomial will then be taken "modulo" by an irreducible
* polynomial of the desired size.
*
* This implementation is inefficient and is solely used to verify the actually performant
* implementation in `./rabin.js`.
*
* @module rabin-gf2-polynomial
*/
/**
* @param {number} degree
*/
const _degreeToMinByteLength = degree => math.floor(degree / 8) + 1;
/**
* This is a GF2 Polynomial abstraction that is not meant for production!
*
* It is easy to understand and it's correctness is as obvious as possible. It can be used to verify
* efficient implementations of algorithms on GF2.
*/
class GF2Polynomial {
constructor () {
/**
* @type {Set<number>}
*/
this.degrees = new Set();
}
}
/**
* From Uint8Array (MSB).
*
* @param {Uint8Array} bytes
*/
const createFromBytes = bytes => {
const p = new GF2Polynomial();
for (let bsi = bytes.length - 1, currDegree = 0; bsi >= 0; bsi--) {
const currByte = bytes[bsi];
for (let i = 0; i < 8; i++) {
if (((currByte >>> i) & 1) === 1) {
p.degrees.add(currDegree);
}
currDegree++;
}
}
return p
};
/**
* Transform to Uint8Array (MSB).
*
* @param {GF2Polynomial} p
* @param {number} byteLength
*/
const toUint8Array = (p, byteLength = _degreeToMinByteLength(getHighestDegree(p))) => {
const buf = encoding.createUint8ArrayFromLen(byteLength);
/**
* @param {number} i
*/
const setBit = i => {
const bi = math.floor(i / 8);
buf[buf.length - 1 - bi] |= (1 << (i % 8));
};
p.degrees.forEach(setBit);
return buf
};
/**
* Create from unsigned integer (max 32bit uint) - read most-significant-byte first.
*
* @param {number} uint
*/
const createFromUint = uint => {
const buf = new Uint8Array(4);
for (let i = 0; i < 4; i++) {
buf[i] = uint >>> 8 * (3 - i);
}
return createFromBytes(buf)
};
/**
* Create a random polynomial of a specified degree.
*
* @param {number} degree
*/
const createRandom = degree => {
const bs = new Uint8Array(_degreeToMinByteLength(degree));
webcrypto__namespace.getRandomValues(bs);
// Get first byte and explicitly set the bit of "degree" to 1 (the result must have the specified
// degree).
const firstByte = bs[0] | 1 << (degree % 8);
// Find out how many bits of the first byte need to be filled with zeros because they are >degree.
const zeros = 7 - (degree % 8);
bs[0] = ((firstByte << zeros) & 0xff) >>> zeros;
return createFromBytes(bs)
};
/**
* @param {GF2Polynomial} p
* @return number
*/
const getHighestDegree = p => array.fold(array.from(p.degrees), 0, math.max);
/**
* Add (+) p2 int the p1 polynomial.
*
* Addition is defined as xor in F2. Substraction is equivalent to addition in F2.
*
* @param {GF2Polynomial} p1
* @param {GF2Polynomial} p2
*/
const addInto = (p1, p2) => {
p2.degrees.forEach(degree => {
if (p1.degrees.has(degree)) {
p1.degrees.delete(degree);
} else {
p1.degrees.add(degree);
}
});
};
/**
* Or (|) p2 into the p1 polynomial.
*
* Addition is defined as xor in F2. Substraction is equivalent to addition in F2.
*
* @param {GF2Polynomial} p1
* @param {GF2Polynomial} p2
*/
const orInto = (p1, p2) => {
p2.degrees.forEach(degree => {
p1.degrees.add(degree);
});
};
/**
* Add (+) p2 to the p1 polynomial.
*
* Addition is defined as xor in F2. Substraction is equivalent to addition in F2.
*
* @param {GF2Polynomial} p1
* @param {GF2Polynomial} p2
*/
const add = (p1, p2) => {
const result = new GF2Polynomial();
p2.degrees.forEach(degree => {
if (!p1.degrees.has(degree)) {
result.degrees.add(degree);
}
});
p1.degrees.forEach(degree => {
if (!p2.degrees.has(degree)) {
result.degrees.add(degree);
}
});
return result
};
/**
* Add (+) p2 to the p1 polynomial.
*
* Addition is defined as xor in F2. Substraction is equivalent to addition in F2.
*
* @param {GF2Polynomial} p
*/
const clone = (p) => {
const result = new GF2Polynomial();
p.degrees.forEach(d => result.degrees.add(d));
return result
};
/**
* Add (+) p2 to the p1 polynomial.
*
* Addition is defined as xor in F2. Substraction is equivalent to addition in F2.
*
* @param {GF2Polynomial} p
* @param {number} degree
*/
const addDegreeInto = (p, degree) => {
if (p.degrees.has(degree)) {
p.degrees.delete(degree);
} else {
p.degrees.add(degree);
}
};
/**
* Multiply (•) p1 with p2 and store the result in p1.
*
* @param {GF2Polynomial} p1
* @param {GF2Polynomial} p2
*/
const multiply = (p1, p2) => {
const result = new GF2Polynomial();
p1.degrees.forEach(degree1 => {
p2.degrees.forEach(degree2 => {
addDegreeInto(result, degree1 + degree2);
});
});
return result
};
/**
* Multiply (•) p1 with p2 and store the result in p1.
*
* @param {GF2Polynomial} p
* @param {number} shift
*/
const shiftLeft = (p, shift) => {
const result = new GF2Polynomial();
p.degrees.forEach(degree => {
const r = degree + shift;
r >= 0 && result.degrees.add(r);
});
return result
};
/**
* Computes p1 % p2. I.e. the remainder of p1/p2.
*
* @param {GF2Polynomial} p1
* @param {GF2Polynomial} p2
*/
const mod = (p1, p2) => {
const maxDeg1 = getHighestDegree(p1);
const maxDeg2 = getHighestDegree(p2);
const result = clone(p1);
for (let i = maxDeg1 - maxDeg2; i >= 0; i--) {
if (result.degrees.has(maxDeg2 + i)) {
const shifted = shiftLeft(p2, i);
addInto(result, shifted);
}
}
return result
};
/**
* Computes (p^e mod m).
*
* http://en.wikipedia.org/wiki/Modular_exponentiation
*
* @param {GF2Polynomial} p
* @param {number} e
* @param {GF2Polynomial} m
*/
const modPow = (p, e, m) => {
let result = ONE;
while (true) {
if ((e & 1) === 1) {
result = mod(multiply(result, p), m);
}
e >>>= 1;
if (e === 0) {
return result
}
p = mod(multiply(p, p), m);
}
};
/**
* Find the greatest common divisor using Euclid's Algorithm.
*
* @param {GF2Polynomial} p1
* @param {GF2Polynomial} p2
*/
const gcd = (p1, p2) => {
while (p2.degrees.size > 0) {
const modded = mod(p1, p2);
p1 = p2;
p2 = modded;
}
return p1
};
/**
* true iff p1 equals p2
*
* @param {GF2Polynomial} p1
* @param {GF2Polynomial} p2
*/
const equals = (p1, p2) => {
if (p1.degrees.size !== p2.degrees.size) return false
for (const d of p1.degrees) {
if (!p2.degrees.has(d)) return false
}
return true
};
const X = createFromBytes(new Uint8Array([2]));
const ONE = createFromBytes(new Uint8Array([1]));
/**
* Computes ( x^(2^p) - x ) mod f
*
* (shamelessly copied from
* https://github.com/opendedup/rabinfingerprint/blob/master/src/org/rabinfingerprint/polynomial/Polynomial.java)
*
* @param {GF2Polynomial} f
* @param {number} p
*/
const reduceExponent = (f, p) => {
// compute (x^q^p mod f)
const q2p = math.pow(2, p);
const x2q2p = modPow(X, q2p, f);
// subtract (x mod f)
return mod(add(x2q2p, X), f)
};
/**
* BenOr Reducibility Test
*
* Tests and Constructions of Irreducible Polynomials over Finite Fields
* (1997) Shuhong Gao, Daniel Panario
*
* http://citeseer.ist.psu.edu/cache/papers/cs/27167/http:zSzzSzwww.math.clemson.eduzSzfacultyzSzGaozSzpaperszSzGP97a.pdf/gao97tests.pdf
*
* @param {GF2Polynomial} p
*/
const isIrreducibleBenOr = p => {
const degree = getHighestDegree(p);
for (let i = 1; i < degree / 2; i++) {
const b = reduceExponent(p, i);
const g = gcd(p, b);
if (!equals(g, ONE)) {
return false
}
}
return true
};
/**
* @param {number} degree
*/
const createIrreducible = degree => {
while (true) {
const p = createRandom(degree);
if (isIrreducibleBenOr(p)) return p
}
};
/**
* Create a fingerprint of buf using the irreducible polynomial m.
*
* @param {Uint8Array} buf
* @param {GF2Polynomial} m
*/
const fingerprint = (buf, m) => toUint8Array(mod(createFromBytes(buf), m), _degreeToMinByteLength(getHighestDegree(m) - 1));
class RabinPolynomialEncoder {
/**
* @param {GF2Polynomial} m The irreducible polynomial
*/
constructor (m) {
this.fingerprint = new GF2Polynomial();
this.m = m;
}
/**
* @param {number} b
*/
write (b) {
const bp = createFromBytes(new Uint8Array([b]));
const fingerprint = shiftLeft(this.fingerprint, 8);
orInto(fingerprint, bp);
this.fingerprint = mod(fingerprint, this.m);
}
getFingerprint () {
return toUint8Array(this.fingerprint, _degreeToMinByteLength(getHighestDegree(this.m) - 1))
}
}
exports.GF2Polynomial = GF2Polynomial;
exports.RabinPolynomialEncoder = RabinPolynomialEncoder;
exports.add = add;
exports.addDegreeInto = addDegreeInto;
exports.addInto = addInto;
exports.clone = clone;
exports.createFromBytes = createFromBytes;
exports.createFromUint = createFromUint;
exports.createIrreducible = createIrreducible;
exports.createRandom = createRandom;
exports.equals = equals;
exports.fingerprint = fingerprint;
exports.gcd = gcd;
exports.getHighestDegree = getHighestDegree;
exports.isIrreducibleBenOr = isIrreducibleBenOr;
exports.mod = mod;
exports.modPow = modPow;
exports.multiply = multiply;
exports.orInto = orInto;
exports.shiftLeft = shiftLeft;
exports.toUint8Array = toUint8Array;
//# sourceMappingURL=rabin-gf2-polynomial.cjs.map
;