UNPKG

lib0

Version:

> Monorepo of isomorphic utility functions

380 lines (352 loc) 8.89 kB
/** * The idea of the Rabin fingerprint algorithm is to represent the binary as a polynomial in a * finite field (Galois Field G(2)). The polynomial will then be taken "modulo" by an irreducible * polynomial of the desired size. * * This implementation is inefficient and is solely used to verify the actually performant * implementation in `./rabin.js`. * * @module rabin-gf2-polynomial */ import * as math from '../math.js' import * as webcrypto from 'lib0/webcrypto' import * as array from '../array.js' import * as buffer from '../buffer.js' /** * @param {number} degree */ const _degreeToMinByteLength = degree => math.floor(degree / 8) + 1 /** * This is a GF2 Polynomial abstraction that is not meant for production! * * It is easy to understand and it's correctness is as obvious as possible. It can be used to verify * efficient implementations of algorithms on GF2. */ export class GF2Polynomial { constructor () { /** * @type {Set<number>} */ this.degrees = new Set() } } /** * From Uint8Array (MSB). * * @param {Uint8Array} bytes */ export const createFromBytes = bytes => { const p = new GF2Polynomial() for (let bsi = bytes.length - 1, currDegree = 0; bsi >= 0; bsi--) { const currByte = bytes[bsi] for (let i = 0; i < 8; i++) { if (((currByte >>> i) & 1) === 1) { p.degrees.add(currDegree) } currDegree++ } } return p } /** * Transform to Uint8Array (MSB). * * @param {GF2Polynomial} p * @param {number} byteLength */ export const toUint8Array = (p, byteLength = _degreeToMinByteLength(getHighestDegree(p))) => { const buf = buffer.createUint8ArrayFromLen(byteLength) /** * @param {number} i */ const setBit = i => { const bi = math.floor(i / 8) buf[buf.length - 1 - bi] |= (1 << (i % 8)) } p.degrees.forEach(setBit) return buf } /** * Create from unsigned integer (max 32bit uint) - read most-significant-byte first. * * @param {number} uint */ export const createFromUint = uint => { const buf = new Uint8Array(4) for (let i = 0; i < 4; i++) { buf[i] = uint >>> 8 * (3 - i) } return createFromBytes(buf) } /** * Create a random polynomial of a specified degree. * * @param {number} degree */ export const createRandom = degree => { const bs = new Uint8Array(_degreeToMinByteLength(degree)) webcrypto.getRandomValues(bs) // Get first byte and explicitly set the bit of "degree" to 1 (the result must have the specified // degree). const firstByte = bs[0] | 1 << (degree % 8) // Find out how many bits of the first byte need to be filled with zeros because they are >degree. const zeros = 7 - (degree % 8) bs[0] = ((firstByte << zeros) & 0xff) >>> zeros return createFromBytes(bs) } /** * @param {GF2Polynomial} p * @return number */ export const getHighestDegree = p => array.fold(array.from(p.degrees), 0, math.max) /** * Add (+) p2 int the p1 polynomial. * * Addition is defined as xor in F2. Substraction is equivalent to addition in F2. * * @param {GF2Polynomial} p1 * @param {GF2Polynomial} p2 */ export const addInto = (p1, p2) => { p2.degrees.forEach(degree => { if (p1.degrees.has(degree)) { p1.degrees.delete(degree) } else { p1.degrees.add(degree) } }) } /** * Or (|) p2 into the p1 polynomial. * * Addition is defined as xor in F2. Substraction is equivalent to addition in F2. * * @param {GF2Polynomial} p1 * @param {GF2Polynomial} p2 */ export const orInto = (p1, p2) => { p2.degrees.forEach(degree => { p1.degrees.add(degree) }) } /** * Add (+) p2 to the p1 polynomial. * * Addition is defined as xor in F2. Substraction is equivalent to addition in F2. * * @param {GF2Polynomial} p1 * @param {GF2Polynomial} p2 */ export const add = (p1, p2) => { const result = new GF2Polynomial() p2.degrees.forEach(degree => { if (!p1.degrees.has(degree)) { result.degrees.add(degree) } }) p1.degrees.forEach(degree => { if (!p2.degrees.has(degree)) { result.degrees.add(degree) } }) return result } /** * Add (+) p2 to the p1 polynomial. * * Addition is defined as xor in F2. Substraction is equivalent to addition in F2. * * @param {GF2Polynomial} p */ export const clone = (p) => { const result = new GF2Polynomial() p.degrees.forEach(d => result.degrees.add(d)) return result } /** * Add (+) p2 to the p1 polynomial. * * Addition is defined as xor in F2. Substraction is equivalent to addition in F2. * * @param {GF2Polynomial} p * @param {number} degree */ export const addDegreeInto = (p, degree) => { if (p.degrees.has(degree)) { p.degrees.delete(degree) } else { p.degrees.add(degree) } } /** * Multiply (•) p1 with p2 and store the result in p1. * * @param {GF2Polynomial} p1 * @param {GF2Polynomial} p2 */ export const multiply = (p1, p2) => { const result = new GF2Polynomial() p1.degrees.forEach(degree1 => { p2.degrees.forEach(degree2 => { addDegreeInto(result, degree1 + degree2) }) }) return result } /** * Multiply (•) p1 with p2 and store the result in p1. * * @param {GF2Polynomial} p * @param {number} shift */ export const shiftLeft = (p, shift) => { const result = new GF2Polynomial() p.degrees.forEach(degree => { const r = degree + shift r >= 0 && result.degrees.add(r) }) return result } /** * Computes p1 % p2. I.e. the remainder of p1/p2. * * @param {GF2Polynomial} p1 * @param {GF2Polynomial} p2 */ export const mod = (p1, p2) => { const maxDeg1 = getHighestDegree(p1) const maxDeg2 = getHighestDegree(p2) const result = clone(p1) for (let i = maxDeg1 - maxDeg2; i >= 0; i--) { if (result.degrees.has(maxDeg2 + i)) { const shifted = shiftLeft(p2, i) addInto(result, shifted) } } return result } /** * Computes (p^e mod m). * * http://en.wikipedia.org/wiki/Modular_exponentiation * * @param {GF2Polynomial} p * @param {number} e * @param {GF2Polynomial} m */ export const modPow = (p, e, m) => { let result = ONE while (true) { if ((e & 1) === 1) { result = mod(multiply(result, p), m) } e >>>= 1 if (e === 0) { return result } p = mod(multiply(p, p), m) } } /** * Find the greatest common divisor using Euclid's Algorithm. * * @param {GF2Polynomial} p1 * @param {GF2Polynomial} p2 */ export const gcd = (p1, p2) => { while (p2.degrees.size > 0) { const modded = mod(p1, p2) p1 = p2 p2 = modded } return p1 } /** * true iff p1 equals p2 * * @param {GF2Polynomial} p1 * @param {GF2Polynomial} p2 */ export const equals = (p1, p2) => { if (p1.degrees.size !== p2.degrees.size) return false for (const d of p1.degrees) { if (!p2.degrees.has(d)) return false } return true } const X = createFromBytes(new Uint8Array([2])) const ONE = createFromBytes(new Uint8Array([1])) /** * Computes ( x^(2^p) - x ) mod f * * (shamelessly copied from * https://github.com/opendedup/rabinfingerprint/blob/master/src/org/rabinfingerprint/polynomial/Polynomial.java) * * @param {GF2Polynomial} f * @param {number} p */ const reduceExponent = (f, p) => { // compute (x^q^p mod f) const q2p = math.pow(2, p) const x2q2p = modPow(X, q2p, f) // subtract (x mod f) return mod(add(x2q2p, X), f) } /** * BenOr Reducibility Test * * Tests and Constructions of Irreducible Polynomials over Finite Fields * (1997) Shuhong Gao, Daniel Panario * * http://citeseer.ist.psu.edu/cache/papers/cs/27167/http:zSzzSzwww.math.clemson.eduzSzfacultyzSzGaozSzpaperszSzGP97a.pdf/gao97tests.pdf * * @param {GF2Polynomial} p */ export const isIrreducibleBenOr = p => { const degree = getHighestDegree(p) for (let i = 1; i < degree / 2; i++) { const b = reduceExponent(p, i) const g = gcd(p, b) if (!equals(g, ONE)) { return false } } return true } /** * @param {number} degree */ export const createIrreducible = degree => { while (true) { const p = createRandom(degree) if (isIrreducibleBenOr(p)) return p } } /** * Create a fingerprint of buf using the irreducible polynomial m. * * @param {Uint8Array} buf * @param {GF2Polynomial} m */ export const fingerprint = (buf, m) => toUint8Array(mod(createFromBytes(buf), m), _degreeToMinByteLength(getHighestDegree(m) - 1)) export class RabinPolynomialEncoder { /** * @param {GF2Polynomial} m The irreducible polynomial */ constructor (m) { this.fingerprint = new GF2Polynomial() this.m = m } /** * @param {number} b */ write (b) { const bp = createFromBytes(new Uint8Array([b])) const fingerprint = shiftLeft(this.fingerprint, 8) orInto(fingerprint, bp) this.fingerprint = mod(fingerprint, this.m) } getFingerprint () { return toUint8Array(this.fingerprint, _degreeToMinByteLength(getHighestDegree(this.m) - 1)) } }