leo-mind-map
Version:
一个简单的web在线思维导图
337 lines (327 loc) • 8.07 kB
JavaScript
import { getRectRelativePosition } from '../../utils/index'
// 获取目标节点在起始节点的目标数组中的索引
export const getAssociativeLineTargetIndex = (node, toNode) => {
return node.getData('associativeLineTargets').findIndex(item => {
return item === toNode.getData('uid')
})
}
// 计算贝塞尔曲线的控制点
export const computeCubicBezierPathPoints = (x1, y1, x2, y2) => {
const min = 5
let cx1 = x1 + (x2 - x1) / 2
let cy1 = y1
let cx2 = cx1
let cy2 = y2
if (Math.abs(x1 - x2) <= min) {
cx1 = x1 + (y2 - y1) / 2
cx2 = cx1
}
if (Math.abs(y1 - y2) <= min) {
cx1 = x1
cy1 = y1 - (x2 - x1) / 2
cx2 = x2
cy2 = cy1
}
return [
{
x: cx1,
y: cy1
},
{
x: cx2,
y: cy2
}
]
}
// 拼接贝塞尔曲线路径
export const joinCubicBezierPath = (startPoint, endPoint, point1, point2) => {
return `M ${startPoint.x},${startPoint.y} C ${point1.x},${point1.y} ${point2.x},${point2.y} ${endPoint.x},${endPoint.y}`
}
// 获取节点的位置信息
const getNodeRect = node => {
let { left, top, width, height } = node
return {
right: left + width,
bottom: top + height,
left,
top,
width,
height
}
}
// 三次贝塞尔曲线
export const cubicBezierPath = (x1, y1, x2, y2) => {
let points = computeCubicBezierPathPoints(x1, y1, x2, y2)
return joinCubicBezierPath(
{ x: x1, y: y1 },
{ x: x2, y: y2 },
points[0],
points[1]
)
}
export const calcPoint = (node, e) => {
const { left, top, translateLeft, translateTop, width, height } = node
const clientX = e.clientX
const clientY = e.clientY
// 中心点的坐标
const centerX = translateLeft + width / 2
const centerY = translateTop + height / 2
const translateCenterX = left + width / 2
const translateCenterY = top + height / 2
const theta = Math.atan(height / width)
// 矩形左上角坐标
const deltaX = clientX - centerX
const deltaY = centerY - clientY
// 方向值
const direction = Math.atan2(deltaY, deltaX)
// 默认坐标
let x = left + width
let y = top + height
if (direction < theta && direction >= -theta) {
// 右边
// 正切值 = 对边/邻边,对边 = 正切值*邻边
const range = direction * (width / 2)
if (direction < theta && direction >= 0) {
// 中心点上边
y = translateCenterY - range
} else if (direction >= -theta && direction < 0) {
// 中心点下方
y = translateCenterY - range
}
return {
x,
y,
dir: 'right',
range
}
} else if (direction >= theta && direction < Math.PI - theta) {
// 上边
y = top
let range = 0
if (direction < Math.PI / 2 - theta && direction >= theta) {
// 正切值 = 对边/邻边,邻边 = 对边/正切值
const side = height / 2 / direction
range = -side
// 中心点右侧
x = translateCenterX + side
} else if (
direction >= Math.PI / 2 - theta &&
direction < Math.PI - theta
) {
// 中心点左侧
const tanValue = (centerX - clientX) / (centerY - clientY)
const side = (height / 2) * tanValue
range = side
x = translateCenterX - side
}
return {
x,
y,
dir: 'top',
range
}
} else if (direction < -theta && direction >= theta - Math.PI) {
// 下边
let range = 0
if (direction >= theta - Math.PI / 2 && direction < -theta) {
// 中心点右侧
// 正切值 = 对边/邻边,邻边 = 对边/正切值
const side = height / 2 / direction
range = side
x = translateCenterX - side
} else if (
direction < theta - Math.PI / 2 &&
direction >= theta - Math.PI
) {
// 中心点左侧
const tanValue = (centerX - clientX) / (centerY - clientY)
const side = (height / 2) * tanValue
range = -side
x = translateCenterX + side
}
return {
x,
y,
dir: 'bottom',
range
}
}
// 左边
x = left
const tanValue = (centerY - clientY) / (centerX - clientX)
const range = tanValue * (width / 2)
if (direction >= -Math.PI && direction < theta - Math.PI) {
// 中心点右侧
y = translateCenterY - range
} else if (direction < Math.PI && direction >= Math.PI - theta) {
// 中心点左侧
y = translateCenterY - range
}
return {
x,
y,
dir: 'left',
range
}
}
// 获取节点的连接点
export const getNodePoint = (node, dir = 'right', range = 0, e = null) => {
let { left, top, width, height } = node
if (e) {
return calcPoint(node, e)
}
switch (dir) {
case 'left':
return {
x: left,
y: top + height / 2 - range,
dir
}
case 'right':
return {
x: left + width,
y: top + height / 2 - range,
dir
}
case 'top':
return {
x: left + width / 2 - range,
y: top,
dir
}
case 'bottom':
return {
x: left + width / 2 - range,
y: top + height,
dir
}
default:
break
}
}
// 根据两个节点的位置计算节点的连接点
export const computeNodePoints = (fromNode, toNode) => {
const fromRect = getNodeRect(fromNode)
const toRect = getNodeRect(toNode)
let fromDir = ''
let toDir = ''
const dir = getRectRelativePosition(
{
x: fromRect.left,
y: fromRect.top,
width: fromRect.width,
height: fromRect.height
},
{
x: toRect.left,
y: toRect.top,
width: toRect.width,
height: toRect.height
}
)
// 起始矩形在结束矩形的什么方向
switch (dir) {
case 'left-top':
fromDir = 'right'
toDir = 'top'
break
case 'right-top':
fromDir = 'left'
toDir = 'top'
break
case 'right-bottom':
fromDir = 'left'
toDir = 'bottom'
break
case 'left-bottom':
fromDir = 'right'
toDir = 'bottom'
break
case 'left':
fromDir = 'right'
toDir = 'left'
break
case 'right':
fromDir = 'left'
toDir = 'right'
break
case 'top':
fromDir = 'right'
toDir = 'right'
break
case 'bottom':
fromDir = 'left'
toDir = 'left'
break
case 'overlap':
fromDir = 'right'
toDir = 'right'
break
default:
break
}
return [getNodePoint(fromNode, fromDir), getNodePoint(toNode, toDir)]
}
// 获取节点的关联线路径
export const getNodeLinePath = (startPoint, endPoint, node, toNode) => {
let targetIndex = getAssociativeLineTargetIndex(node, toNode)
// 控制点
let controlPoints = []
let associativeLineTargetControlOffsets = node.getData(
'associativeLineTargetControlOffsets'
)
if (
associativeLineTargetControlOffsets &&
associativeLineTargetControlOffsets[targetIndex]
) {
// 节点保存了控制点差值
let offsets = associativeLineTargetControlOffsets[targetIndex]
controlPoints = [
{
x: startPoint.x + offsets[0].x,
y: startPoint.y + offsets[0].y
},
{
x: endPoint.x + offsets[1].x,
y: endPoint.y + offsets[1].y
}
]
} else {
// 没有保存控制点则生成默认的
controlPoints = computeCubicBezierPathPoints(
startPoint.x,
startPoint.y,
endPoint.x,
endPoint.y
)
}
// 根据控制点拼接贝塞尔曲线路径
return {
path: joinCubicBezierPath(
startPoint,
endPoint,
controlPoints[0],
controlPoints[1]
),
controlPoints
}
}
// 获取默认的控制点差值
export const getDefaultControlPointOffsets = (startPoint, endPoint) => {
let controlPoints = computeCubicBezierPathPoints(
startPoint.x,
startPoint.y,
endPoint.x,
endPoint.y
)
return [
{
x: controlPoints[0].x - startPoint.x,
y: controlPoints[0].y - startPoint.y
},
{
x: controlPoints[1].x - endPoint.x,
y: controlPoints[1].y - endPoint.y
}
]
}