UNPKG

langchain

Version:
1 lines 12.8 kB
{"version":3,"file":"contextEditing.d.ts","names":["__types_js10","BaseMessage","BaseLanguageModel","ContextSize","KeepSize","TokenCounter","ContextEdit","Promise","ClearToolUsesEditConfig","ClearToolUsesEdit","Set","ContextEditingMiddlewareConfig","contextEditingMiddleware","_langchain_core_tools5","ServerTool","ClientTool","AgentMiddleware"],"sources":["../../../src/agents/middleware/contextEditing.d.ts"],"sourcesContent":["/**\n * Context editing middleware.\n *\n * This middleware mirrors Anthropic's context editing capabilities by clearing\n * older tool results once the conversation grows beyond a configurable token\n * threshold. The implementation is intentionally model-agnostic so it can be used\n * with any LangChain chat model.\n */\nimport type { BaseMessage } from \"@langchain/core/messages\";\nimport type { BaseLanguageModel } from \"@langchain/core/language_models/base\";\nimport { type ContextSize, type KeepSize, type TokenCounter } from \"./summarization.js\";\n/**\n * Protocol describing a context editing strategy.\n *\n * Implement this interface to create custom strategies for managing\n * conversation context size. The `apply` method should modify the\n * messages array in-place and return the updated token count.\n *\n * @example\n * ```ts\n * import { HumanMessage, type ContextEdit, type BaseMessage } from \"langchain\";\n *\n * class RemoveOldHumanMessages implements ContextEdit {\n * constructor(private keepRecent: number = 10) {}\n *\n * async apply({ messages, countTokens }) {\n * // Check current token count\n * const tokens = await countTokens(messages);\n *\n * // Remove old human messages if over limit, keeping the most recent ones\n * if (tokens > 50000) {\n * const humanMessages: number[] = [];\n *\n * // Find all human message indices\n * for (let i = 0; i < messages.length; i++) {\n * if (HumanMessage.isInstance(messages[i])) {\n * humanMessages.push(i);\n * }\n * }\n *\n * // Remove old human messages (keep only the most recent N)\n * const toRemove = humanMessages.slice(0, -this.keepRecent);\n * for (let i = toRemove.length - 1; i >= 0; i--) {\n * messages.splice(toRemove[i]!, 1);\n * }\n * }\n * }\n * }\n * ```\n */\nexport interface ContextEdit {\n /**\n * Apply an edit to the message list, returning the new token count.\n *\n * This method should:\n * 1. Check if editing is needed based on `tokens` parameter\n * 2. Modify the `messages` array in-place (if needed)\n * 3. Return the new token count after modifications\n *\n * @param params - Parameters for the editing operation\n * @returns The updated token count after applying edits\n */\n apply(params: {\n /**\n * Array of messages to potentially edit (modify in-place)\n */\n messages: BaseMessage[];\n /**\n * Function to count tokens in a message array\n */\n countTokens: TokenCounter;\n /**\n * Optional model instance for model profile information\n */\n model?: BaseLanguageModel;\n }): void | Promise<void>;\n}\n/**\n * Configuration for clearing tool outputs when token limits are exceeded.\n */\nexport interface ClearToolUsesEditConfig {\n /**\n * Trigger conditions for context editing.\n * Can be a single condition object (all properties must be met) or an array of conditions (any condition must be met).\n *\n * @example\n * ```ts\n * // Single condition: trigger if tokens >= 100000 AND messages >= 50\n * trigger: { tokens: 100000, messages: 50 }\n *\n * // Multiple conditions: trigger if (tokens >= 100000 AND messages >= 50) OR (tokens >= 50000 AND messages >= 100)\n * trigger: [\n * { tokens: 100000, messages: 50 },\n * { tokens: 50000, messages: 100 }\n * ]\n *\n * // Fractional trigger: trigger at 80% of model's max input tokens\n * trigger: { fraction: 0.8 }\n * ```\n */\n trigger?: ContextSize | ContextSize[];\n /**\n * Context retention policy applied after editing.\n * Specify how many tool results to preserve using messages, tokens, or fraction.\n *\n * @example\n * ```ts\n * // Keep 3 most recent tool results\n * keep: { messages: 3 }\n *\n * // Keep tool results that fit within 1000 tokens\n * keep: { tokens: 1000 }\n *\n * // Keep tool results that fit within 30% of model's max input tokens\n * keep: { fraction: 0.3 }\n * ```\n */\n keep?: KeepSize;\n /**\n * Whether to clear the originating tool call parameters on the AI message.\n * @default false\n */\n clearToolInputs?: boolean;\n /**\n * List of tool names to exclude from clearing.\n * @default []\n */\n excludeTools?: string[];\n /**\n * Placeholder text inserted for cleared tool outputs.\n * @default \"[cleared]\"\n */\n placeholder?: string;\n /**\n * @deprecated Use `trigger: { tokens: value }` instead.\n */\n triggerTokens?: number;\n /**\n * @deprecated Use `keep: { messages: value }` instead.\n */\n keepMessages?: number;\n /**\n * @deprecated This property is deprecated and will be removed in a future version.\n * Use `keep: { tokens: value }` or `keep: { messages: value }` instead to control retention.\n */\n clearAtLeast?: number;\n}\n/**\n * Strategy for clearing tool outputs when token limits are exceeded.\n *\n * This strategy mirrors Anthropic's `clear_tool_uses_20250919` behavior by\n * replacing older tool results with a placeholder text when the conversation\n * grows too large. It preserves the most recent tool results and can exclude\n * specific tools from being cleared.\n *\n * @example\n * ```ts\n * import { ClearToolUsesEdit } from \"langchain\";\n *\n * const edit = new ClearToolUsesEdit({\n * trigger: { tokens: 100000 }, // Start clearing at 100K tokens\n * keep: { messages: 3 }, // Keep 3 most recent tool results\n * excludeTools: [\"important\"], // Never clear \"important\" tool\n * clearToolInputs: false, // Keep tool call arguments\n * placeholder: \"[cleared]\", // Replacement text\n * });\n *\n * // Multiple trigger conditions\n * const edit2 = new ClearToolUsesEdit({\n * trigger: [\n * { tokens: 100000, messages: 50 },\n * { tokens: 50000, messages: 100 }\n * ],\n * keep: { messages: 3 },\n * });\n *\n * // Fractional trigger with model profile\n * const edit3 = new ClearToolUsesEdit({\n * trigger: { fraction: 0.8 }, // Trigger at 80% of model's max tokens\n * keep: { fraction: 0.3 }, // Keep 30% of model's max tokens\n * });\n * ```\n */\nexport declare class ClearToolUsesEdit implements ContextEdit {\n #private;\n trigger: ContextSize | ContextSize[];\n keep: KeepSize;\n clearToolInputs: boolean;\n excludeTools: Set<string>;\n placeholder: string;\n model: BaseLanguageModel;\n clearAtLeast: number;\n constructor(config?: ClearToolUsesEditConfig);\n apply(params: {\n messages: BaseMessage[];\n model: BaseLanguageModel;\n countTokens: TokenCounter;\n }): Promise<void>;\n}\n/**\n * Configuration for the Context Editing Middleware.\n */\nexport interface ContextEditingMiddlewareConfig {\n /**\n * Sequence of edit strategies to apply. Defaults to a single\n * ClearToolUsesEdit mirroring Anthropic defaults.\n */\n edits?: ContextEdit[];\n /**\n * Whether to use approximate token counting (faster, less accurate)\n * or exact counting implemented by the chat model (potentially slower, more accurate).\n * Currently only OpenAI models support exact counting.\n * @default \"approx\"\n */\n tokenCountMethod?: \"approx\" | \"model\";\n}\n/**\n * Middleware that automatically prunes tool results to manage context size.\n *\n * This middleware applies a sequence of edits when the total input token count\n * exceeds configured thresholds. By default, it uses the `ClearToolUsesEdit` strategy\n * which mirrors Anthropic's `clear_tool_uses_20250919` behaviour by clearing older\n * tool results once the conversation exceeds 100,000 tokens.\n *\n * ## Basic Usage\n *\n * Use the middleware with default settings to automatically manage context:\n *\n * @example Basic usage with defaults\n * ```ts\n * import { contextEditingMiddleware } from \"langchain\";\n * import { createAgent } from \"langchain\";\n *\n * const agent = createAgent({\n * model: \"anthropic:claude-sonnet-4-5\",\n * tools: [searchTool, calculatorTool],\n * middleware: [\n * contextEditingMiddleware(),\n * ],\n * });\n * ```\n *\n * The default configuration:\n * - Triggers when context exceeds **100,000 tokens**\n * - Keeps the **3 most recent** tool results\n * - Uses **approximate token counting** (fast)\n * - Does not clear tool call arguments\n *\n * ## Custom Configuration\n *\n * Customize the clearing behavior with `ClearToolUsesEdit`:\n *\n * @example Custom ClearToolUsesEdit configuration\n * ```ts\n * import { contextEditingMiddleware, ClearToolUsesEdit } from \"langchain\";\n *\n * // Single condition: trigger if tokens >= 50000 AND messages >= 20\n * const agent1 = createAgent({\n * model: \"anthropic:claude-sonnet-4-5\",\n * tools: [searchTool, calculatorTool],\n * middleware: [\n * contextEditingMiddleware({\n * edits: [\n * new ClearToolUsesEdit({\n * trigger: { tokens: 50000, messages: 20 },\n * keep: { messages: 5 },\n * excludeTools: [\"search\"],\n * clearToolInputs: true,\n * }),\n * ],\n * tokenCountMethod: \"approx\",\n * }),\n * ],\n * });\n *\n * // Multiple conditions: trigger if (tokens >= 50000 AND messages >= 20) OR (tokens >= 30000 AND messages >= 50)\n * const agent2 = createAgent({\n * model: \"anthropic:claude-sonnet-4-5\",\n * tools: [searchTool, calculatorTool],\n * middleware: [\n * contextEditingMiddleware({\n * edits: [\n * new ClearToolUsesEdit({\n * trigger: [\n * { tokens: 50000, messages: 20 },\n * { tokens: 30000, messages: 50 },\n * ],\n * keep: { messages: 5 },\n * }),\n * ],\n * }),\n * ],\n * });\n *\n * // Fractional trigger with model profile\n * const agent3 = createAgent({\n * model: chatModel,\n * tools: [searchTool, calculatorTool],\n * middleware: [\n * contextEditingMiddleware({\n * edits: [\n * new ClearToolUsesEdit({\n * trigger: { fraction: 0.8 }, // Trigger at 80% of model's max tokens\n * keep: { fraction: 0.3 }, // Keep 30% of model's max tokens\n * model: chatModel,\n * }),\n * ],\n * }),\n * ],\n * });\n * ```\n *\n * ## Custom Editing Strategies\n *\n * Implement your own context editing strategy by creating a class that\n * implements the `ContextEdit` interface:\n *\n * @example Custom editing strategy\n * ```ts\n * import { contextEditingMiddleware, type ContextEdit, type TokenCounter } from \"langchain\";\n * import type { BaseMessage } from \"@langchain/core/messages\";\n *\n * class CustomEdit implements ContextEdit {\n * async apply(params: {\n * tokens: number;\n * messages: BaseMessage[];\n * countTokens: TokenCounter;\n * }): Promise<number> {\n * // Implement your custom editing logic here\n * // and apply it to the messages array, then\n * // return the new token count after edits\n * return countTokens(messages);\n * }\n * }\n * ```\n *\n * @param config - Configuration options for the middleware\n * @returns A middleware instance that can be used with `createAgent`\n */\nexport declare function contextEditingMiddleware(config?: ContextEditingMiddlewareConfig): import(\"./types.js\").AgentMiddleware<undefined, undefined, unknown, readonly (import(\"@langchain/core/tools\").ServerTool | import(\"@langchain/core/tools\").ClientTool)[]>;\n//# sourceMappingURL=contextEditing.d.ts.map"],"mappings":";;;;;;;;;AA2EsB;AAKtB;;;;AAqCmB;AAkEnB;;;;;;;;;;;;AAA6D;AAmB7D;AAyIA;;;;;AAA+H;;;;;;;;;;;;;UAjS9GM,WAAAA;;;;;;;;;;;;;;;;cAgBCL;;;;iBAIGI;;;;YAILH;aACDK;;;;;UAKEC,uBAAAA;;;;;;;;;;;;;;;;;;;;YAoBHL,cAAcA;;;;;;;;;;;;;;;;;SAiBjBC;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;cAkEUK,iBAAAA,YAA6BH;;WAErCH,cAAcA;QACjBC;;gBAEQM;;SAEPR;;uBAEcM;;cAEPP;WACHC;iBACMG;MACbE;;;;;UAKSI,8BAAAA;;;;;UAKLL;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iBAoIYM,wBAAAA,UAAkCD,0FAA8BE,sBAAAA,CAAiHC,UAAAA,GAAUD,sBAAAA,CAAmCE"}