langchain
Version:
Typescript bindings for langchain
1 lines • 6.08 kB
Source Map (JSON)
{"version":3,"file":"utils.d.ts","names":["CallbackManagerForLLMRun","BaseChatModel","BaseChatModelParams","BindToolsInput","ToolChoice","StructuredTool","BaseMessage","AIMessage","HumanMessage","BaseMessageFields","AIMessageFields","ToolMessage","ToolMessageFields","ChatResult","Runnable","RunnableConfig","RunnableLambda","RunnableBinding","MemorySaver","Checkpoint","CheckpointMetadata","BaseCheckpointSaver","LanguageModelLike","z","_AnyIdAIMessage","_AnyIdHumanMessage","_AnyIdToolMessage","FakeConfigurableModel","Record","Promise","FakeToolCallingChatModel","MemorySaverAssertImmutable","Uint8Array","ToolCall","FakeToolCallingModelFields","createCheckpointer","FakeToolCallingModel","toolCalls","toolStyle","index","structuredResponse","indexRef","SearchAPI","ZodString","ZodTypeAny","ZodObject","this","schema","infer"],"sources":["../../../src/agents/tests/utils.d.ts"],"sourcesContent":["import { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport { BaseChatModel, BaseChatModelParams, BindToolsInput, ToolChoice } from \"@langchain/core/language_models/chat_models\";\nimport { StructuredTool } from \"@langchain/core/tools\";\nimport { BaseMessage, AIMessage, HumanMessage, BaseMessageFields, AIMessageFields, ToolMessage, ToolMessageFields } from \"@langchain/core/messages\";\nimport { ChatResult } from \"@langchain/core/outputs\";\nimport { Runnable, RunnableConfig, RunnableLambda, RunnableBinding } from \"@langchain/core/runnables\";\nimport { MemorySaver, Checkpoint, CheckpointMetadata, type BaseCheckpointSaver } from \"@langchain/langgraph-checkpoint\";\nimport { LanguageModelLike } from \"@langchain/core/language_models/base\";\nimport { z } from \"zod/v3\";\nexport declare class _AnyIdAIMessage extends AIMessage {\n get lc_id(): string[];\n constructor(fields: AIMessageFields | string);\n}\nexport declare class _AnyIdHumanMessage extends HumanMessage {\n get lc_id(): string[];\n constructor(fields: BaseMessageFields | string);\n}\nexport declare class _AnyIdToolMessage extends ToolMessage {\n get lc_id(): string[];\n constructor(fields: ToolMessageFields);\n}\nexport declare class FakeConfigurableModel extends BaseChatModel {\n _queuedMethodOperations: Record<string, any>;\n _chatModel: LanguageModelLike;\n constructor(fields: {\n model: LanguageModelLike;\n } & BaseChatModelParams);\n _llmType(): string;\n _generate(_messages: BaseMessage[], _options: this[\"ParsedCallOptions\"], _runManager?: CallbackManagerForLLMRun): Promise<ChatResult>;\n _model(): Promise<LanguageModelLike>;\n bindTools(tools: BindToolsInput[]): FakeConfigurableModel;\n}\nexport declare class FakeToolCallingChatModel extends BaseChatModel {\n sleep?: number;\n responses?: BaseMessage[];\n thrownErrorString?: string;\n idx: number;\n toolStyle: \"openai\" | \"anthropic\" | \"bedrock\" | \"google\";\n structuredResponse?: Record<string, unknown>;\n // Track messages passed to structured output calls\n structuredOutputMessages: BaseMessage[][];\n constructor(fields: {\n sleep?: number;\n responses?: BaseMessage[];\n thrownErrorString?: string;\n toolStyle?: \"openai\" | \"anthropic\" | \"bedrock\" | \"google\";\n structuredResponse?: Record<string, unknown>;\n } & BaseChatModelParams);\n _llmType(): string;\n _generate(messages: BaseMessage[], _options: this[\"ParsedCallOptions\"], runManager?: CallbackManagerForLLMRun): Promise<ChatResult>;\n bindTools(tools: BindToolsInput[]): Runnable<any>;\n withStructuredOutput<RunOutput extends Record<string, any> = Record<string, any>>(_: unknown): Runnable<any>;\n}\nexport declare class MemorySaverAssertImmutable extends MemorySaver {\n storageForCopies: Record<string, Record<string, Uint8Array>>;\n constructor();\n put(config: RunnableConfig, checkpoint: Checkpoint, metadata: CheckpointMetadata): Promise<RunnableConfig>;\n}\ninterface ToolCall {\n name: string;\n args: Record<string, any>;\n id: string;\n type?: \"tool_call\";\n}\ninterface FakeToolCallingModelFields {\n toolCalls?: ToolCall[][];\n toolStyle?: \"openai\" | \"anthropic\";\n index?: number;\n structuredResponse?: any;\n}\n// Helper function to create checkpointer\nexport declare function createCheckpointer(): BaseCheckpointSaver;\n/**\n * Fake chat model for testing tool calling functionality\n */\nexport declare class FakeToolCallingModel extends BaseChatModel {\n toolCalls: ToolCall[][];\n toolStyle: \"openai\" | \"anthropic\";\n // Use a shared reference object so the index persists across bindTools calls\n private indexRef;\n structuredResponse?: any;\n private tools;\n constructor({ toolCalls, toolStyle, index, structuredResponse, indexRef, ...rest }?: FakeToolCallingModelFields & {\n indexRef?: {\n current: number;\n };\n });\n // Getter/setter for backwards compatibility\n get index(): number;\n set index(value: number);\n _llmType(): string;\n _combineLLMOutput(): never[];\n bindTools(tools: StructuredTool[]): FakeToolCallingModel | RunnableBinding<any, any, any & {\n tool_choice?: ToolChoice | undefined;\n }>;\n withStructuredOutput(_schema: any): RunnableLambda<unknown, any, RunnableConfig<Record<string, any>>>;\n _generate(messages: BaseMessage[], _options?: this[\"ParsedCallOptions\"], _runManager?: CallbackManagerForLLMRun): Promise<ChatResult>;\n}\nexport declare class SearchAPI extends StructuredTool {\n name: string;\n description: string;\n schema: z.ZodObject<{\n query: z.ZodString;\n }, \"strip\", z.ZodTypeAny, {\n query: string;\n }, {\n query: string;\n }>;\n _call(input: z.infer<typeof this.schema>): Promise<string>;\n}\nexport {};\n"],"mappings":";;;;;;;;;;;;UA0DUiC,UAAAA;;QAEAL;;;;UAIAM,0BAAAA;cACMD;;;;;;;;;;cAUKG,oBAAAA,SAA6BnC,aAAAA;aACnCgC;;;;;;;;;;;;;MAM0EC;;;;;;;;;;mBAUpE7B,mBAAmB+B,uBAAuBnB;kBACzCb;;sCAEkBY,6BAA6BD,eAAea;sBAC5DtB,mEAAmEN,2BAA2B6B,QAAQhB"}