langchain
Version:
Typescript bindings for langchain
90 lines (89 loc) • 4.68 kB
JavaScript
var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
if (k2 === undefined) k2 = k;
var desc = Object.getOwnPropertyDescriptor(m, k);
if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
desc = { enumerable: true, get: function() { return m[k]; } };
}
Object.defineProperty(o, k2, desc);
}) : (function(o, m, k, k2) {
if (k2 === undefined) k2 = k;
o[k2] = m[k];
}));
var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
Object.defineProperty(o, "default", { enumerable: true, value: v });
}) : function(o, v) {
o["default"] = v;
});
var __importStar = (this && this.__importStar) || (function () {
var ownKeys = function(o) {
ownKeys = Object.getOwnPropertyNames || function (o) {
var ar = [];
for (var k in o) if (Object.prototype.hasOwnProperty.call(o, k)) ar[ar.length] = k;
return ar;
};
return ownKeys(o);
};
return function (mod) {
if (mod && mod.__esModule) return mod;
var result = {};
if (mod != null) for (var k = ownKeys(mod), i = 0; i < k.length; i++) if (k[i] !== "default") __createBinding(result, mod, k[i]);
__setModuleDefault(result, mod);
return result;
};
})();
Object.defineProperty(exports, "__esModule", { value: true });
exports.push = void 0;
exports.pull = pull;
const base_js_1 = require("./base.cjs");
Object.defineProperty(exports, "push", { enumerable: true, get: function () { return base_js_1.basePush; } });
const index_js_1 = require("../load/index.cjs");
/**
* Pull a prompt from the hub.
* @param ownerRepoCommit The name of the repo containing the prompt, as well as an optional commit hash separated by a slash.
* @param options.apiKey LangSmith API key to use when pulling the prompt
* @param options.apiUrl LangSmith API URL to use when pulling the prompt
* @param options.includeModel Whether to also instantiate and attach a model instance to the prompt,
* if the prompt has associated model metadata. If set to true, invoking the resulting pulled prompt will
* also invoke the instantiated model. You must have the appropriate LangChain integration package installed.
* @returns
*/
async function pull(ownerRepoCommit, options) {
const promptObject = await (0, base_js_1.basePull)(ownerRepoCommit, options);
let modelClass;
if (options?.includeModel) {
if (Array.isArray(promptObject.manifest.kwargs?.last?.kwargs?.bound?.id)) {
const modelName = promptObject.manifest.kwargs?.last?.kwargs?.bound?.id.at(-1);
if (modelName === "ChatOpenAI") {
modelClass = (await Promise.resolve().then(() => __importStar(require("@langchain/openai")))).ChatOpenAI;
}
else if (modelName === "ChatAnthropic") {
modelClass = (await Promise.resolve().then(() => __importStar(require("@langchain/anthropic")))).ChatAnthropic;
}
else if (modelName === "ChatAzureOpenAI") {
modelClass = (await Promise.resolve().then(() => __importStar(require("@langchain/openai")))).AzureChatOpenAI;
}
else if (modelName === "ChatVertexAI") {
modelClass = (await Promise.resolve().then(() => __importStar(require("@langchain/google-vertexai")))).ChatVertexAI;
}
else if (modelName === "ChatGoogleGenerativeAI") {
modelClass = (await Promise.resolve().then(() => __importStar(require("@langchain/google-genai"))))
.ChatGoogleGenerativeAI;
}
else if (modelName === "ChatBedrockConverse") {
modelClass = (await Promise.resolve().then(() => __importStar(require("@langchain/aws")))).ChatBedrockConverse;
}
else if (modelName === "ChatMistral") {
modelClass = (await Promise.resolve().then(() => __importStar(require("@langchain/mistralai")))).ChatMistralAI;
}
else if (modelName === "ChatGroq") {
modelClass = (await Promise.resolve().then(() => __importStar(require("@langchain/groq")))).ChatGroq;
}
else if (modelName !== undefined) {
console.warn(`Received unknown model name from prompt hub: "${modelName}"`);
}
}
}
const loadedPrompt = await (0, index_js_1.load)(JSON.stringify(promptObject.manifest), undefined, (0, base_js_1.generateOptionalImportMap)(modelClass), (0, base_js_1.generateModelImportMap)(modelClass));
return loadedPrompt;
}
;