UNPKG

langchain

Version:
57 lines (56 loc) 2.99 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.pull = exports.push = void 0; const base_js_1 = require("./base.cjs"); Object.defineProperty(exports, "push", { enumerable: true, get: function () { return base_js_1.basePush; } }); const index_js_1 = require("../load/index.cjs"); /** * Pull a prompt from the hub. * @param ownerRepoCommit The name of the repo containing the prompt, as well as an optional commit hash separated by a slash. * @param options.apiKey LangSmith API key to use when pulling the prompt * @param options.apiUrl LangSmith API URL to use when pulling the prompt * @param options.includeModel Whether to also instantiate and attach a model instance to the prompt, * if the prompt has associated model metadata. If set to true, invoking the resulting pulled prompt will * also invoke the instantiated model. You must have the appropriate LangChain integration package installed. * @returns */ async function pull(ownerRepoCommit, options) { const promptObject = await (0, base_js_1.basePull)(ownerRepoCommit, options); let modelClass; if (options?.includeModel) { if (Array.isArray(promptObject.manifest.kwargs?.last?.kwargs?.bound?.id)) { const modelName = promptObject.manifest.kwargs?.last?.kwargs?.bound?.id.at(-1); if (modelName === "ChatOpenAI") { modelClass = (await import("@langchain/openai")).ChatOpenAI; } else if (modelName === "ChatAnthropic") { modelClass = (await import("@langchain/anthropic")).ChatAnthropic; } else if (modelName === "ChatAzureOpenAI") { modelClass = (await import("@langchain/openai")).AzureChatOpenAI; } else if (modelName === "ChatGoogleVertexAI") { modelClass = (await import("@langchain/google-vertexai")).ChatVertexAI; } else if (modelName === "ChatGoogleGenerativeAI") { modelClass = (await import("@langchain/google-genai")) .ChatGoogleGenerativeAI; } else if (modelName === "ChatBedrockConverse") { modelClass = (await import("@langchain/aws")).ChatBedrockConverse; } else if (modelName === "ChatMistral") { modelClass = (await import("@langchain/mistralai")).ChatMistralAI; } else if (modelName === "ChatGroq") { modelClass = (await import("@langchain/groq")).ChatGroq; } else if (modelName !== undefined) { console.warn(`Received unknown model name from prompt hub: "${modelName}"`); } } } const loadedPrompt = await (0, index_js_1.load)(JSON.stringify(promptObject.manifest), undefined, (0, base_js_1.generateOptionalImportMap)(modelClass), (0, base_js_1.generateModelImportMap)(modelClass)); return loadedPrompt; } exports.pull = pull;